CRANK-NICOLSON SCHEME
(for the heat equation with zero boundary conditions)
FINITE DIFFRENCE EQUATION

$$
-\frac{s}{2} u_{j-1}^{(m+1)}+(1+s) u_{j}^{(m+1)}-\frac{s}{2} u_{j+1}^{(m+1)}=\frac{s}{2} u_{j-1}^{(m)}+(1-s) u_{j}^{(m)}+\frac{s}{2} u_{j+1}^{(m)}
$$

STENCIL:

IMPLEMENTATION
Matrix form: $A u^{(m+1)}=B u^{(m)}$
where $A=\left[\begin{array}{cccc}1+s & \frac{-s}{2} & 0 & \cdots \\ -\frac{s}{2} & 1+s & \frac{-s}{2} & \cdots \\ 0 & -\frac{s}{2} & 1+s & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right]$ and $B=\left[\begin{array}{cccc}1-s & \frac{s}{2} & 0 & \cdots \\ \frac{s}{2} & 1-s & \frac{s}{2} & \cdots \\ 0 & \frac{s}{2} & 1-s & \cdots \\ \vdots & \vdots & \vdots & \ddots\end{array}\right]$
Try it in Mathematica!
STABILITY: Let $s=\frac{k \Delta t}{\Delta x^{2}}$ and $u_{j}^{(m)}=e^{i \alpha x_{j}} Q^{m}$.
Then:: $\quad e^{i \alpha x_{j}} Q^{m+1}-e^{i \alpha x_{j}} Q^{m}=\frac{s}{2}\left(e^{i \alpha\left(x_{j}+\Delta x\right)} Q^{m}-2 e^{i \alpha x_{x}} Q^{m}+e^{i \alpha\left(x_{j}-\Delta x\right)} Q^{m}\right.$

$$
\left.+e^{i \alpha\left(x_{j}+\alpha x\right)} Q^{m+1}-2 e^{i \alpha x_{i} Q^{m+1}}+e^{i \alpha\left(x_{j}-2 x\right)} Q^{m+1}\right)
$$

$$
\begin{aligned}
e^{i \alpha x \delta} Q^{\alpha}(Q-1) & =\frac{s}{2} e^{i \alpha x \alpha} Q^{\alpha}\left(e^{i \alpha \Delta x}-2+e^{-i \Delta \Delta x}+e^{i \omega \Delta x} Q-2 Q+e^{-i \alpha \Delta x} Q\right) \\
Q-1 & =\frac{s}{2}(2 \cos (\alpha \Delta x)-2+Q(2 \cos (\alpha \Delta x)-2)) \\
Q-1 & =s(\cos (\alpha \Delta x)-1+Q(\cos (\alpha \Delta x)-1))
\end{aligned}
$$

Solve for $Q: \quad Q-Q s(\cos (\alpha \Delta x)-1)=1+s(\cos (\alpha \Delta x)-1)$

$$
Q(1+s w)=1-s w \Leftarrow \text { Let } w=1-\cos (\alpha \Delta x) \text {. }
$$

Note $w \geq 0$.
Thus: $Q=\frac{1-s w}{1+s w} \sim$ If $s w \geq 0$, then this fraction is always between -1 and 1 .

Since $s>0$, we see that $|Q|<1$ for all s, and so the Crank-Nicolson scheme is unconditionally stable.

Finite differences for the wave Equation

$$
\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}, \quad 0 \leq x \leq L, \quad t \geq 0
$$

Boundary conditions: $u(0, t)=\alpha(t), \quad u(L, t)=\beta(t)$
Initial conditions: $u(x, 0)=f(x), \quad \frac{\partial u}{\partial t}(x, 0)=g(t)$

1. Centered differences for space and time:

$$
\begin{aligned}
& \frac{\partial^{2} k}{\partial \varepsilon^{2}}=c^{2} \frac{\partial x^{2}}{\partial x^{2}} \\
& O\left(\Delta t^{2}\right)+\frac{u_{j}^{(n-1)}-2 u_{j}^{(-)}+u_{j}^{(r-1)}}{\Delta t^{2}}=c^{2} \frac{u_{s}^{(n)}-2 u_{s}^{(-)}+u_{s-1}^{(s)}}{\Delta x^{2}}+O\left(\Delta x^{2}\right)
\end{aligned}
$$

Truncation error: $O\left(o t t^{2}\right)+O\left(\left(\Delta x^{2}\right)=O\left(t t^{2}+\Delta x^{2}\right)\right.$
2. Write $u_{j}^{(h a t)}$ in terms of u at previous time steps:

$$
u_{j}^{(m-1)}=s^{2} u_{j-1}^{(m)}+2\left(1-s^{2}\right) u_{j}^{(n)}+s^{2} u_{j-1}^{(m)}-u_{j}^{(n-)} \text {, where } s=\frac{c \Delta t}{\Delta x} \text {. }
$$

3. Matrix form: $\quad U^{(m-1)}=A U^{(())}-U^{(n-1)}$,
where $U^{(-1)}$ is a vector of the computed values $u_{1}^{(-)}, u_{2}^{(1)}, \ldots, u_{w=1}^{(1)}$.

$$
\left[\begin{array}{c}
u_{1}^{(m-1)} \\
\vdots \\
u_{m=1}^{(m)}
\end{array}\right]=\left[\begin{array}{cccc}
2\left(1-s^{2}\right) & s^{2} & 0 & \cdots \\
s^{2} & 2\left(1-s^{2}\right) & s^{2} & \cdots \\
0 & s^{2} & 2\left(1-s^{3}\right) \\
\vdots & \vdots & &
\end{array}\right]\left[\begin{array}{c}
u_{1}^{(-)} \\
\vdots \\
u_{m=1}^{(0)}
\end{array}\right]-\left[\begin{array}{c}
u_{1}^{(n-1)} \\
\vdots \\
u_{m=1}^{(n-1)}
\end{array}\right]
$$

4. (a) The forward difference can compute $U^{(1)}$ in terms of $U^{(0)}$, but with error $O($ ot $)$.
However, we would prefer error not worse than $O\left(\right.$ ot $\left.^{2}\right)$.
(b) Centered difference is $O\left(\Delta t^{2}\right)$.

Thus: $2 \Delta t g\left(x_{j}\right)+u_{j}^{(-)}=s^{2} u_{j-1}^{(0)}+2\left(1-s^{2}\right) u_{j}^{(0)}+s^{2} u_{j-1}^{(0)}-u_{j}^{(-)}$

$$
u_{j}^{(-1)}=\frac{1}{2}[\underbrace{\left[s^{2} u_{j-1}^{(0)}+2\left(1-s^{2}\right) u_{j}^{(0)}+s^{2} u_{j+1}^{(0)}-2 \Delta t g\left(x_{j}\right)\right]}_{\text {all known quantities! }}
$$

5. Stability analysis: Let $u_{j}^{(m)}=e^{i \alpha x_{j}} Q^{m}$.

$$
\begin{aligned}
e^{i \alpha x_{j}} Q^{m+1} & =s^{2} e^{i \alpha\left(x_{j}-\Delta x\right)} Q^{m}+2\left(1-s^{2}\right) e^{i \alpha x_{j}} Q^{m}+s^{2} e^{i \alpha\left(x_{j}+\Delta x\right)} Q^{m}-e^{i \alpha x_{j}} Q^{m-1} \\
Q^{2} & =s^{2} Q e^{i \alpha \Delta x}+2\left(1-s^{2}\right) Q+s^{2} Q e^{-i \alpha \Delta x}-1 \\
Q^{2} & =Q\left[2 s^{2} \cos (\alpha \Delta x)+2-2 s^{2}\right]-1 \\
Q^{2} & =Q\left[2+2 s^{2}(\cos (\alpha \Delta x)-1)\right]-1 \\
Q^{2} & =Q\left[2-4 s^{2} \sin ^{2}\left(\frac{\alpha \Delta x}{2}\right)\right]-1
\end{aligned}
$$

6. Quadratic formula: Let $\sigma=1-2 s^{2} \sin ^{2}\left(\frac{\alpha \Delta x}{2}\right)$.

Then $Q^{2}-2 \sigma Q+1=0$, so

$$
Q=\sigma \pm \sqrt{\sigma^{2}-1}
$$

If $|\sigma|<1$, then Q is complex: $Q=\sigma \pm i \sqrt{1-\sigma^{2}}$.
Then $|Q|=\sqrt{\sigma^{2}+\left(1-\sigma^{2}\right)}=1$, so the numerical scheme is stable.
If $|\sigma|=1$, then $Q=\sigma= \pm 1$, and the scheme is stable.
If $|\sigma|>1$, then Q is real.
Note that $\sigma=1-2 s^{2} \sin ^{2}\left(\frac{\alpha \Delta x}{2}\right) \leq 1$, so consider $\sigma<-1$.
If $\sigma<-1$, then $Q_{-}=\sigma-\sqrt{\sigma^{2}-1}<-1$, so the scheme is unstable.
Thus, this numerical scheme is stable of $|\sigma| \leq 1$. That is:

$$
-1 \leq 1-2 s^{2} \sin ^{2}\left(\frac{\alpha \Delta x}{2}\right) \leq 1
$$

This requires that $0 \leq s^{2} \leq 1$, which implies $s=\underbrace{\frac{c \Delta t}{\Delta x} \leq 1 \text {. }}$
"Courant Stability Condition" for the wave equation

