
where $u_{j}^{(m)}$ is the numerical solution at x_{j}, t_{m}
The explicit scheme is stable if $s<\frac{1}{2}$ and unstable if $s>\frac{1}{2}$.

$$
S=\frac{k \Delta t}{\Delta x^{2}} \text {, so we want } \frac{k \Delta t}{\Delta x^{2}}<\frac{1}{2} \text {, so } \Delta t<\frac{\Delta x^{2}}{2 k}
$$

The time step must be much smaller than the spatial step.
OBSERVE:

$$
u_{j}^{(m+1)}=\underbrace{s u_{j+1}^{(m)}+(1-2 s) u_{j}^{(m)}+s u_{j-1}^{(m)}}_{\text {This is a weighted average }} \quad{ }_{\text {of }}^{\left(x_{j-1}\right.} \overbrace{x_{j}}^{x_{j+1}} t_{m}
$$

nungical solution values at the t_{m}
If $s>\frac{1}{2}$, then the coefficient $1-2 s<0$, which is concerning.

RICHARDSON'S SCHEME

Use centered differences for space and time.
$\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$ becomes $\frac{u(x, t+\Delta t)-u(x, t-\Delta t)}{2 \Delta t}=k \frac{u(x+\Delta x, t)-2 u(x, t)+u(x-\Delta x, t)}{\Delta x^{2}}$
STENCIL:

$$
\begin{aligned}
\frac{u_{j}^{(m+1)}-u_{j}^{(m-1)}}{2 \Delta t} & =k \frac{u_{j+1}^{(m)}-2 u_{j}^{(m)}+u_{j-1}^{(m)}}{\Delta x^{2}} \\
u_{j}^{(m+1)} & =u_{j}^{(m-1)}+\frac{2 k \Delta t}{\Delta x^{2}}\left(u_{j+1}^{(m)}-2 u_{j}^{(m)}+u_{j-1}^{(m)}\right)
\end{aligned}
$$

STABILITY: let $s=\frac{k \Delta t}{\Delta x^{2}}, \quad u_{j}^{(n)}=e^{i \alpha x_{j}} Q^{m}$.
Then: $\quad e^{i \alpha x_{j}} Q^{m+1}=e^{i \alpha x_{j}} Q^{m-1}+2 s\left(e^{i \alpha\left(x_{j}+\Delta x\right)}-2 e^{i \alpha x_{j}}+e^{i \alpha\left(x_{j}-\Delta x\right)}\right) Q^{m}$

$$
e^{i \alpha x_{1}} Q^{m+1}=e^{i \alpha x_{5}} Q^{m-1}+2 s e^{i \alpha x_{j}}\left(e^{i \alpha \Delta x}-2+e^{-i \alpha \Delta x}\right) Q^{m}
$$

$$
Q^{2}=1+2 s Q(\underbrace{e^{i \alpha \Delta x}+e^{-i \alpha \Delta x}}-2)
$$

$$
\cos (\alpha \Delta x)+i \sin (\alpha \Delta x)+\cos (\alpha \Delta x)-i \sin (\alpha \Delta x)
$$

$$
Q^{2}=1+2 s Q(2 \cos (\alpha \Delta x)-2)
$$

$$
Q^{2}+4 \operatorname{si}(1-\cos (\alpha \Delta x))-1=0
$$

Let $w=2 s(1-\cos (\alpha \Delta x))$.
Observe $\omega \geq 0 . \quad Q^{2}+2 \omega Q-1=0$
by the quadratic formula: $Q=\frac{-2 w \pm \sqrt{(2 w)^{2}-4(-1)}}{2}=-w \pm \sqrt{w^{2}+1}$
Since $w \geq 0$, we have $\omega^{2}+1 \geq 1$, and $-\sqrt{w^{2}+1} \leq-1$.
Thus, $Q_{-}=-w-\sqrt{w^{2}+1}<-1$, so the scheme is unstable for all s. (Stability requires all Q to satisfy $|Q| \leq 1$.)
CRANK-NICOLSON SCHEME

Take the average of

$$
\begin{aligned}
& \text { Take the average of } \\
& \text { two centered differences } t_{m+1} \\
& \text { for } \frac{\partial^{2 u}}{\partial x^{2}}
\end{aligned}
$$

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad \text { average of second derivative }
$$

$\quad \begin{aligned} & \frac{\partial u}{\partial t}\left(x_{j}, t_{m}+\frac{\Delta t}{2}\right) \\ & \text { forward } \\ & \text { difference }\end{aligned}$
$y u^{(m+1)}-u_{m}^{(m)}$$\frac{\frac{\partial^{2} u}{\partial x^{2}}\left(x_{j}, t_{m}\right)+\frac{\partial^{2} u}{\partial x^{2}}\left(x_{j}, t_{m}+\Delta t\right)}{2}$ centered differences

$$
\frac{u_{j}^{(n+1)}-u_{j}^{(m)}}{2}=\frac{k}{2}\left(\frac{u_{j+1}^{(n)}-2 u_{j}^{(m)}+u_{j-1}^{(m)}}{\Delta x^{2}}+\frac{u_{j+1}^{(m+1)}-2 u_{j}^{(n+1)}+2 u_{i-1}^{(m+1)}}{\Delta x^{2}}\right)
$$

Let $s=\frac{k \Delta t}{\Delta x^{2}}$ as before. Then:

$$
u_{j}^{(m+1)}-u_{j}^{(m)}=\frac{s}{2}\left(u_{j+1}^{(m)}-2 u_{j}^{(m)}+u_{j-1}^{(m)}+u_{j+1}^{(m+1)}-2 u_{j}^{(m+1)}+u_{j-1}^{(m+1)}\right)
$$

Separate the time indexes: $m+1$ on the left, m on the right.

$$
-\frac{s}{2} u_{j+1}^{(n+1)}+(1+s) u_{j}^{(m+1)}-\frac{s}{2} u_{j-1}^{(m+1)}=\frac{s}{2} u_{j+1}^{(m)}+(1-s) u_{j}^{(r)}+\frac{s}{2} u_{j-1}^{(m)}
$$

We can write this equation in matrix form and use it to compute the numerical solution.

