LAST TIME: $\quad r^{2} \frac{d^{2} f}{d r^{2}}+r \frac{d f}{d r}+\left(\lambda r^{2}-m^{2}\right) f=0 \quad 0 \leq r \leq a$
divide by r to put into $S-L$ form, $p(r)=r, q(r)=\frac{-\mu^{2}}{r}, \sigma(r)=r$
Let $z=\sqrt{\lambda}$ r:

$$
z^{2} \frac{d^{2} f}{d z^{2}}+z \frac{d f}{d z}+\left(z^{2}-m^{2}\right) f=0 \quad \text { Bessel's eq. } \quad \text { of order } m
$$

Solutions: Bessel functions $J_{m}(z)$ (first kind)
$Y_{m}(z) \quad$ (second kind)
(d) $f(z)=c_{1} J_{m}(z)+c_{2} Y_{m}(z)$
$|f(0)|<\infty$ implies $c_{2}=0$, so $f(z)=c_{1} J_{m}(z)$
$f(a)=0$ implies $c_{1} J_{m}(a)=0$ we need a to be a 200 of J_{m}
So: let $z_{m n}$ be the $n^{\text {th }}$ zero of J_{m}

$$
\begin{array}{r}
a \in\left\{z_{m 1}, z_{m 2}, z_{m 3}, \ldots\right\} \quad \text {, and } \quad \begin{array}{r}
z=\sqrt{\lambda} r, \text { or } \\
\lambda=\left(\frac{z}{r}\right)^{2}
\end{array}
\end{array}
$$

eigenvalues: $\lambda=\left(\frac{z_{m}}{a}\right)^{2}$
(e) Orthogonality: $\int_{0}^{a} J_{m}(\underbrace{\frac{z_{m p}}{a}}_{\underbrace{a}_{\text {iganamive }}} r) J_{m}\left(\frac{z_{m q}}{a} r\right) \underset{\substack{\text { weight }}}{r} d r$

Vibrating Drum Solution:

$$
\begin{aligned}
& u(r, \theta, t)= \sum_{\substack{m \geq 0 \\
n \geq 0}} J_{m}\left(\sqrt{\lambda_{m n}} r\right)\left\{\begin{array}{c}
\cos (m \theta) \\
\sin (m \theta)
\end{array}\right\}\left\{\begin{array}{l}
\cos \left(c t \sqrt{\lambda_{m n}}\right) \\
\sin \left(c t \sqrt{\lambda_{m n}}\right)
\end{array}\right\} \\
& \lambda_{m n}=\left(\frac{z_{m}}{a}\right)^{2}
\end{aligned}
$$

FINITE DIFFERENCE APPROXIMATIONS
How can we appoximate a faction with a polynomial? Taylor series!
TAYLOR'S THEDREM: If f has $k+1$ derivatives at $x=x_{0}$, then $f\left(x_{0}+\Delta x\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \Delta x+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}(\Delta x)^{2}+\cdots+\frac{f^{(k)}\left(x_{0}\right)}{k!}(\Delta x)^{k}+\frac{f^{(k+1)}\left(\xi_{k+1}\right)}{(k+1)!}(\Delta x)^{k+1}$

error term,
degree k

$$
\xi_{k+1} \in\left(x_{0}, x_{0}+\Delta x\right)
$$

center of
Taylor polynomial
EXAMPLE: First-degree Taylor polynomial

$$
\begin{aligned}
& f\left(x_{0}+\Delta x\right)=\underbrace{f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \Delta x}_{\text {approx. for } f\left(x_{0}+\Delta x\right)}+\frac{f^{\prime \prime}\left(\xi_{2}\right)}{2}(\Delta x)^{2} \\
& f\left(x_{0}+\Delta x\right) \approx f\left(x_{0}\right)+\underbrace{f^{\prime}\left(x_{0}\right)}_{\text {Solve for }} \Delta x \\
& \begin{array}{c}
\text { FORWARD } \\
\substack{\text { DiFFERENCE } \\
\text { APPROX. } \\
\text { FOR } \\
f^{\prime}} \\
f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}\right)}{\Delta x}-\frac{f^{\prime \prime}\left(\xi_{2}\right)}{2} \Delta x \\
\text { difference quotient from }
\end{array} \\
& \text { calculus class }
\end{aligned}
$$

Truncation error $R=\left|\frac{f^{\prime \prime}\left(\xi_{2}\right)}{2} \Delta x\right| \leq C|\Delta x|$ where $C=\max _{x \in\left(x, x_{0}+\alpha x\right)} \frac{1}{2} f^{\prime \prime}(x)$

$$
R \leq C|\Delta x| \quad R=O(\Delta x)
$$

First-order approx. error is \wedge proportional to the first power of Δx.
DEF: $\underbrace{R=O\left(\Delta x^{n}\right)}$ means that $\lim _{\Delta x \rightarrow 0} \frac{R}{\Delta x^{n}}=$ constant $<\infty$
" R is big-O of $\Delta x^{\prime \prime}$ "
EXAMPLE: $\quad 5 \Delta x^{2}+1000 \Delta x^{3}=O\left(\Delta x^{2}\right)$

$$
\begin{aligned}
& \lim _{\Delta x \rightarrow 0} \frac{5 \Delta x^{2}+1000 \Delta x^{3}}{\Delta x^{3}}=\infty \\
& \lim _{\Delta x \rightarrow 0} \frac{5 \Delta x^{2}+100 \Delta x^{3}}{\Delta x^{2}}=5
\end{aligned}
$$

BACK WARD DIFFERENCE

$$
\begin{aligned}
& \text { ACE WARD DIFFERENCE } f^{\prime}\left(x_{0}\right) \approx \frac{f\left(x_{0}-\Delta x\right)-f\left(x_{0}\right)}{-\Delta x} \text {, also has error } O(\Delta x) \\
& \text { APPROX of } f^{\prime} \text { : }
\end{aligned}
$$

WORKSHEET: DERIVATIVE APPROXIMATIONS

1. (a) $f\left(x_{0}+\Delta x\right)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) \Delta x+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}(\Delta x)^{2}+O\left(\Delta x^{3}\right)$
(b) $f\left(x_{0}-\Delta x\right)=f\left(x_{0}\right)-f^{\prime}\left(x_{0}\right) \Delta x+\frac{f^{\prime \prime}\left(x_{0}\right)}{2}(\Delta x)^{2}+O\left(\Delta x^{3}\right)$
(c) $f\left(x_{0}+\Delta x\right)-f\left(x_{0}-\Delta x\right)=2 f^{\prime}\left(x_{0}\right) \Delta x+O\left(\Delta x^{3}\right)$

Thus: $\quad f^{\prime}\left(x_{0}\right)=\frac{f\left(x_{0}+\Delta x\right)-f\left(x_{0}-\Delta x\right)}{2 \Delta x}+O\left(\Delta x^{2}\right)$
Centered difference approx. for f^{\prime}

