Recall: \quad S-L EQ: $\frac{d}{d x}\left(p(x) \frac{d \phi}{d x}\right)+q(x) \phi+\lambda \sigma(x) \phi=0, \quad a<x<b$
p, q, σ real-valued functions, $p(x)>0, \sigma(x)>0$
REGULAR: $\quad \beta_{1} \phi(a)+\beta_{2} \frac{d p}{d x}(a)=0, \quad \beta_{3} \phi(b)+\beta_{4} \frac{d \phi}{d x}(b)=0$
LASt TIME:
2. $\phi^{\prime \prime}+4 \phi^{\prime}+8 \phi+\lambda \phi=0, \quad \phi(0)=\phi(L)=0$

We multiplied by $e^{4 x}$ to put this eq. in $S-L$ form.
Solve: char. poly. $r^{2}+4 r+(8+\lambda)=0$ so $r=-2 \pm \sqrt{-\lambda-4}$
No nontrivial solutions for $-\lambda-4 \geq 0$
If $-\lambda-4<0$, then $\sqrt{-\lambda-y}=i \sqrt{\lambda+4}$
If $-\lambda-4<0$: $\quad \phi(x)=A e^{-2 x} \cos (x \sqrt{\lambda+4})+B e^{-2 x} \sin (x \sqrt{\lambda+4})$
Boundary: $\quad \phi(0)=0 \Rightarrow 0=A e^{0} \cos (0)+0$
$0=A$

$$
\phi(L)=0 \Rightarrow 0=B e^{-2 L} \sin (L \sqrt{\lambda+4})
$$

We need $L \sqrt{\lambda+4}=n \pi$, or $\sqrt{\lambda+4}=\frac{n \pi}{L}$, or $\lambda=\left(\frac{n \pi}{L}\right)^{2}-4$
Verify S-L Theorems 1-5: for $n=1,2,3 \cdots$

- Eigenvalues are real, and they form an infinite sequence with a smallest, but no largest, eigenvalue
- Eigenfunction: $\phi_{n}(x)=e^{-2 x} \sin \left(\frac{N \pi}{L} x\right)$, one eiganfuction per eigenvalue
- Completeness: $f \sim \sum_{n=1}^{\infty} a_{n} \phi_{n}(x)=\sum_{n=1}^{\infty} a_{n} e^{-2 x} \sin \left(\frac{n \pi}{L} x\right)$

If $f(x)=\sum_{n=1}^{\infty} a_{n} e^{-2 x} \sin \left(\frac{n \pi}{L} x\right)$, then $f(x) e^{2 x}=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi}{L} x\right)$
and we can find $a_{n}: a_{n}=\int_{0}^{L} f(x) e^{2 x} \sin \left(\frac{n \pi}{2} x\right) d x$

- Orthogonality: $\quad \int_{0}^{l} \phi_{n} \phi_{m} \sigma d x=0$ if $m \neq n$

Here, $\sigma(x)=e^{4 x}: \quad \int_{0}^{L}\left(e^{-2 x} \sin \left(\frac{n \pi}{L} x\right)\right)\left(e^{-2 x} \sin \left(\frac{m \pi}{L} x\right)\right) e^{4 x} d x=0$ if $m \neq n$
3. Heat equation with non-constart thermal properties.

Suppose $u(x, t)=\Phi(x) h(t)$ and separation of variables produces

$$
\frac{d h}{d t}=-\lambda h \quad \text { and } \quad \frac{d}{d x}\left[K_{0}(x) \frac{d \phi}{d x}\right]=-\lambda c(x) \rho(x) \phi
$$

(a) $\frac{d}{d x}\left[K_{0} \frac{d b}{d x}\right]+\lambda c \rho \phi=0$ and $\phi(0)=\phi(L)=0 \leftarrow$ Regular $S-L$ equation

$$
p(x)=k_{0}(x), \quad q(x)=0, \quad \sigma(x)=c(x) \rho(x)
$$

(b) Assume $\phi_{n}(x)$ are known for $n=1,2,3, \ldots$

Then, the Rayleigh Quotient gives:

$$
\lambda_{n}=\frac{-\left.K_{0} \phi \frac{d p}{d x}\right|_{0} ^{L}+\int_{0}^{L}\left[K_{0}\left(\frac{\partial g}{d x}\right)^{2}-0\right] d x}{\int_{0}^{l} \phi^{2} c \rho d x}
$$

Assume: $\quad K_{0}(x)>0$ for all x

$$
p(x)>0
$$

$$
\lambda_{n}=\frac{\int_{0}^{L} K_{0}\left(\frac{d \phi}{d x}\right)^{2} d x}{\int_{0}^{L} \phi^{2} c \rho d x}>0
$$

eigenvalues are positive!
(c) Since $h(t)=c e^{-\lambda t}$, series solution is $u(x, t)=\sum_{n=1}^{\infty} a_{n} \phi_{n}(x) e_{\uparrow}^{-\lambda_{n} t}$
(d) If $u(x, 0)=f(x)=\sum_{n=1}^{\infty} a_{n} \phi_{n}(x)$

Since eigentunctions are or thogonal with respect to weight function cp:

$$
\begin{aligned}
& \int_{0}^{L} f(x) \phi_{m}(x) c \rho d x=\sum_{n=1}^{\infty} \int_{0}^{L} a_{n} \phi_{n}(x) \phi_{m}(x) c \rho d x=0 \quad \text { unless } m=n \\
& \int_{0}^{L} f(x) \phi_{m}(x) c \rho d x=\int_{0}^{L} a_{n} \phi_{m}^{2} c \rho d x
\end{aligned}
$$

Solve for a^{2} :

$$
a_{n}=\frac{\int_{0}^{L} f \phi_{m} c \rho d x}{\int_{0}^{l} \phi_{m}^{2} c \rho d x}
$$

$\$ 5,5$
OPERATOR: a function on functions
example: $\quad L(y)=\frac{d}{d x}\left[p \frac{d y}{d x}\right]+q y$
example: If $y=x^{2}$:

$$
\begin{aligned}
& \text { input to } L \\
& \text { is a function } \\
& y(x)
\end{aligned}
$$

$$
\begin{aligned}
L\left(x^{2}\right) & =\frac{d}{d x}\left[p \frac{d}{d x}\left(x^{2}\right)\right]+q x^{2} \\
& =\frac{d}{d x}[p \cdot 2 x]+q x^{2} \\
& =\frac{d p}{d x} \cdot 2 x+2 p+q x^{2}
\end{aligned}
$$

For this operator L, the $S-L$ equation can be written

$$
L(\phi)+\lambda \sigma \phi=0 .
$$

LAGRANGE'S IDENTITY: Let u and v be any functions of x.
Consider: $\quad L(u)=\frac{d}{d x}\left[p \frac{d u}{d x}\right]+q u$ and $L(v)=\frac{d}{d x}\left[p \frac{d v}{d x}\right]+q v$
Then: $\quad u L(v)-v L(u)=u \cdot \frac{d}{d x}\left[p \frac{d v}{d x}\right]+q u v-v \frac{d}{d x}\left[p \frac{d u}{d x}\right]-q u v$
Product Rule: $\frac{d}{d x}\left[u \cdot p \frac{d v}{d x}\right]=\frac{d u}{d x} \cdot p \frac{d v}{d x}+u \cdot \frac{d}{d x}\left(p \frac{d v}{d x}\right)$
Subtract - $\left(\frac{d}{d x}\left[v \cdot \rho \frac{d u}{d x}\right]=\frac{d v}{d x} \cdot p \frac{d u}{d x}+v \frac{d}{d x}\left(\rho \frac{d u}{d x}\right)\right)$

$$
\frac{d}{d x}\left[u \cdot p \cdot \frac{d v}{d x}\right]-\frac{d}{d x}\left[v \cdot p \frac{d u}{d x}\right]=0+u \cdot \frac{d}{d x}\left(p \frac{d v}{d x}\right)-v \frac{d}{d x}\left(p \frac{d u}{d x}\right)
$$

So:

$$
u L(v)-v L(u)=\frac{d}{d x}\left[u \cdot p \frac{d v}{d x}\right]-\frac{d}{d x}\left[v \cdot p \frac{d u}{d x}\right]
$$

LAGRNGE'S IDENTITY

Integrate to obtain:

$$
\begin{aligned}
& \int_{a}^{b}(u L(v)-v L(u)) d x=\int_{a}^{b}\left(\frac{d}{d x}\left[u \cdot p \frac{d v}{d x}\right]-\frac{d}{d x}\left[v \cdot p \frac{d u}{a x}\right]\right) d x \\
& \int_{a}^{b}(u L(v)-v L(u)) d x=\left[u \cdot p \frac{d v}{d x}-v \cdot p \frac{d u}{d x}\right]_{a}^{b} \\
& \int_{a}^{b}(u L(v)-v L(u)) d x=\left[p\left(u \cdot \frac{d v}{d x}-v \frac{d u}{d x}\right)\right]_{a}^{b} \\
& \text { GREENS } \\
& \text { IDENTITY }
\end{aligned}
$$

$$
\frac{J_{a}(u L(v)-v L(u)) a x-\operatorname{Lr}(v a x \cdot d x) J_{a} \mid \text { IDENTITy) }}{} \begin{aligned}
& \text { For most boundary conditions that we } \\
& \text { encounter (e.g. Regular } S-L \text { boundaries), } \\
& \text { this is zero. }
\end{aligned}
$$

EXAMPLE: Let ϕ_{M} and ϕ_{n} be eigafunctions of a regular $S-L$ problem, corresponding to different eigenvalues. $\quad(m \neq n)$

So:

$$
\begin{aligned}
& \phi_{n} L\left(\phi_{m}\right)+\lambda_{m} \sigma \phi_{m} \phi_{n}=0 \\
& -\left(\phi_{m} L\left(\phi_{n}\right)+\lambda_{n} \sigma \phi_{n} \phi_{m}=0\right) \text { subtract } \\
& \phi_{n} L\left(\phi_{m}\right)-\phi_{m} L\left(\phi_{1}\right)+\left(\lambda_{m}-\lambda_{n}\right) \sigma \phi_{n} \phi_{m}=0
\end{aligned}
$$

Integrate:

$$
\left.\begin{array}{rl}
\underbrace{\int_{a}^{b}\left(\phi_{n} L\left(\phi_{m}\right)-\phi_{m} L\left(\phi_{n}\right)\right) d x}_{\begin{array}{c}
\text { Regular } S-L \text { boundary conditions } \\
\text { imply this is zero. }
\end{array}}
\end{array}=\left(\lambda_{n}-\lambda_{m}\right) \int_{a}^{b} \sigma \phi_{n} \phi_{n} d x\right]
$$

Thus, either $\lambda_{n}=\lambda_{m}$, or ϕ_{n} and ϕ_{m} are orthogonal!

