ORTH GONALITY
PROBLEM I: recall series solution $u(x, t)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-k\left(\frac{n \pi}{L}\right)^{2} t}$

1. $f(x)=5 \sin \left(\frac{3 \pi x}{L}\right)$ so $u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sin \left(\frac{n \pi}{L} x\right)=\sin \left(\frac{3 \pi}{L} x\right)$

$$
B_{1} \sin \left(\frac{\pi}{2} x\right)+B_{2} \sin \left(\frac{2 \pi}{L} x\right)+B_{3} \sin \left(\frac{3 \pi}{2} x\right)+B_{4} \sin \left(\frac{4 \pi}{L} x\right)+\cdots=5 \sin \left(\frac{3 \pi}{L} x\right)
$$

so $B_{3}=5$

$$
\text { and } B_{n}=0 \text { for } n \neq 3
$$

2. $f(x)=5 \sin \left(\frac{3 \pi}{2} x\right)+8 \sin \left(\frac{6 \pi}{2} x\right) \quad$ then $B_{3}=5, \quad B_{6}=8$, and $B_{n}=0$ for $n \&\{3,6\}$ product-to-sum identity
3. If $n \neq m$:

$$
\begin{aligned}
& \int_{0}^{L} \sin \left(\frac{n \pi}{L} x\right) \sin \left(\frac{m \pi}{L} x\right) d x=-\frac{1}{2} \int_{0}^{L}\left(\cos \frac{(m+n) \pi}{L} x-\cos \frac{(n-m) \pi}{L} x\right) d x \\
& =\left[\frac{-L}{2(m+n) \pi} \sin \frac{(m+n) \pi}{L} x+\frac{L}{2(n-n) \pi} \sin \frac{(n-n) \pi}{L} x\right]_{0}^{L}
\end{aligned}
$$

If $m=n: \quad \int_{0}^{L} \sin ^{2}\left(\frac{n \pi}{L} x\right) d x=\frac{1}{2} \int_{0}^{L}\left(1-\cos \frac{2 n \pi}{L} x\right) d x=\left[\frac{1}{2} x-\frac{L}{4 \pi n x} \sin \frac{2 n \pi}{L} x\right]_{0}^{L}$

$$
=\left[\frac{L}{2}-\frac{L}{\ln \pi x} \sin (2 n \pi)-0\right]=\frac{L}{2}
$$

4. $\quad f(x)=\sum_{n=1}^{\infty} B_{n} \sin \frac{n \pi x}{L}$

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{L} B_{n} \sin \frac{n \pi x}{L} \\
& \int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x=\int_{0}^{L} \sum_{0=1}^{\infty} B_{n} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x \\
& \int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x=\sum_{n=1}^{\infty} B_{n} \int_{0}^{L} \sin \frac{n \pi x}{L} \sin \frac{m \pi x}{L} d x
\end{aligned}
$$

$\int^{L} f(x) \sin \frac{m \pi x}{d x}-R \underline{L}$ all terns are zero except

$$
\begin{aligned}
& J_{0} f(x) \sin \frac{T}{L} d x-\sum_{n=1} \text { On } J_{0} \sin L \sin L \text { on } \\
& \int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x=B_{m} \frac{L}{2} \text { all terms are zero except }
\end{aligned}
$$

So $B_{m}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{m \pi x}{L} d x$
5. $f(x)=5$:

$$
L=1
$$

$$
\begin{gathered}
B_{m}=2 \int_{0}^{1} 5 \sin (m \pi x) d x=\left.\frac{-10}{m \pi} \cos (m \pi x)\right|_{0} ^{1} \\
=\frac{-10}{m \pi}(\cos (m \pi)-\cos (0))
\end{gathered}
$$

$$
B_{m}=\frac{-10}{m \pi}(\cos (m \pi)-1)=\left\{\begin{array}{cl}
0 & \text { if } m \text { is even } \\
\frac{20}{m \pi} & \text { if } m \text { is odd }
\end{array}\right.
$$

PROBLEM II: Solution: $u(x, t)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{L} x\right) e^{-k\left(\frac{n \pi}{2}\right)^{2} t}$
6. If $f(x)=5+\cos (2 \pi x)$ and $L=1$, then: $A_{0}=5, A_{2}=1, A_{1}=0$ otherwise
7. use $2 \cos (\alpha) \cos (\beta)=\cos (\alpha-\beta)+\cos (\alpha+\beta)$

$$
\int_{0}^{L} \cos \left(\frac{n \pi}{L} x\right) \cos \left(\frac{m \pi}{L} x\right) d x= \begin{cases}0 & \text { if } m \neq n \\ \frac{L}{2} & \text { if } n=m \neq 0 \\ L & \text { if } n=m=0\end{cases}
$$

8. Initial condition: $f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \left(\frac{n \pi}{L} x\right)$

Multiply by $\cos \left(\frac{m \pi}{L} x\right)$ and integrate:

$$
\int_{0}^{l} f(x) \cos \left(\frac{n \pi}{L} x\right) d x=\sum_{n=0}^{\infty} \int_{0}^{L} A_{n} \cos \left(\frac{n \pi}{L} x\right) \cos \left(\frac{n \pi}{L} x\right) d x
$$

Then: $A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x$ and $A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \left(\frac{n \pi}{L} x\right) d x$ if $n>0$
9. If $L=1$ and $f(x)=x-x^{2}$, then:

$$
\begin{aligned}
& A_{0}=\int_{0}^{1}\left(x-x^{2}\right) d x=\frac{1}{6} \\
& \text { if } n>0: \quad A_{n}=2 \int_{0}^{L}\left(x-x^{2}\right) \cos (n \pi x) d x=-2\left(\frac{1+\cos (n \pi)}{n^{2} \pi^{2}}\right)= \begin{cases}0 & \text { if } n \text { odd } \\
\frac{-4}{n^{2} \pi^{2}} & \text { if } n \text { even }\end{cases}
\end{aligned}
$$

