LINEARITY
A LINEAR OPERATOR \mathcal{L} satisfies $\mathcal{L}\left(c_{1} u_{1}+c_{2} u_{2}\right)=c_{1} \mathcal{L}\left(u_{1}\right)+c_{2} \mathcal{L}\left(u_{2}\right)$ for any functions u_{1} and u_{2}, and constants c_{1} and c_{2}. examples: derivative, integral
HEAT OPERATOR: $\mathcal{L}(u)=\frac{\partial u}{\partial t}-k \frac{\partial^{2} u}{\partial x^{2}}$
Heat Equation:

$$
\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}} \quad \text { or } \quad \mathcal{L}(u)=0
$$

Why is this linear?

$$
\begin{aligned}
\mathcal{L}\left(c_{1} u_{1}+c_{2} u_{2}\right) & =\frac{\partial}{\partial t}\left(c_{1} u_{1}+c_{2} u_{2}\right)-k \frac{\partial^{2}}{\partial x^{2}}\left(c_{1} u_{1}+c_{2} u_{2}\right) \quad \begin{array}{l}
\text { since derivative is } \\
\text { a linear operator }
\end{array} \\
& =c_{1} \frac{\partial u_{1}}{\partial t}+c_{2} \frac{\partial u_{2}}{\partial t}-k c_{1} \frac{\partial^{2} u_{1}}{\partial x^{2}}-k c_{2} \frac{\partial^{2} u_{2}}{\partial x^{2}} \\
& =c_{1} \frac{\partial u_{1}}{\partial t}-k c_{1} \frac{\partial^{2} u_{1}}{\partial x^{2}}+c_{2} \frac{\partial u_{2}}{\partial t}-k c_{2} \frac{\partial^{2} u_{2}}{\partial x^{2}} \\
& =c_{1} \mathcal{L}\left(u_{1}\right)+c_{2} \mathcal{L}\left(u_{2}\right)
\end{aligned}
$$

LINEAR EQUATION: $\mathcal{L}(u(x, t))=f(x, t)$, where \mathcal{L} is a linear operator and $f(x, t)$ is known

LINEAR HOMOGENEOUS EQUATION: $\mathcal{L}(u(x, t))=0$
LINEAR BOUNDARY CONDIT IONS: $\mathcal{L}(u(a, t))=f_{1}(t)$ and $\mathcal{L}(u(b, t))=f_{2}(t)$
EXAMPLES: $u(a, t)=5$ or $\frac{\partial u}{\partial t}(b, t)=0$

$$
\text { NON-EXAMPLE: }[u(0, t)]^{2}=1
$$

PRINCIPLE OF SUPERPOSITION: If u_{1} and u_{2} satisfy a linear homogeneous equation, then any linear combination $c_{1} u_{1}+c_{2} u_{2}$ also satisfies the same linear homogeneous equation.

SEPARATION OF VARIABLES
PDF: $\frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$

Boundary Conditions: $u(0, t)=0, u(L, t)=0$
Initial Condition: $u(x, 0)=f(x)$-ignore for now]

1. Look for a solution: $u(x, t)=\phi(x) G(t) \Leftarrow \phi$ and G are some unknown functions
Plug in to the PDE: $\quad \frac{\partial u}{\partial t}=k \frac{\partial^{2} u}{\partial x^{2}}$

$$
\phi(x) \frac{d G(t)}{d t}=k \frac{d^{2} \phi(t)}{d x^{2}} G(t)
$$

Separate x from t :
2. (a)

$$
\frac{1}{k G(t)} \frac{d G}{d t}=\frac{1}{\phi(x)} \frac{d^{2} \phi}{d x^{2}}=-\lambda
$$

function of t function of where λ is some constant

These can only be equal if they are in fact constant!

We obtain: $\frac{1}{k G(t)} \cdot \frac{d G}{d t}=-\lambda$ and $\frac{1}{\phi(x)} \cdot \frac{d^{2} \phi}{d x^{2}}=-\lambda \quad \leftarrow$ two ODEs
(b) $\quad \frac{\partial G}{\partial t}=-\lambda k G$ has solution $G(t)=A e^{-\lambda k t}$
3. BVP: $\frac{d^{2} \phi}{d x^{2}}=-\lambda \phi$ with $\phi(0)=0, \phi(L)=0$

$$
\phi(0) G(t)=0
$$

$$
\phi^{\prime \prime}+\lambda \phi=0, \quad s^{2}+\lambda=0
$$

Boundary:

$$
u(0, t)=0
$$

$\phi(0)=0$ to avoid the trivial solution
$\lambda<0$: two real roots: $r= \pm \sqrt{-\lambda}$
solution: $\phi(x)=c_{1} e^{\sqrt{\lambda} x}+c_{2} e^{-\sqrt{-\lambda} x}$
boundary: $\phi(0)=0=c_{1}+c_{2}$ so $c_{2}=-c_{1}$
only the trivial solution

$$
\begin{aligned}
\phi(L) & =c_{1} e^{\sqrt{-\lambda} L}+c_{2} e^{-\sqrt{\lambda} L} \\
& =c_{1} \underbrace{\left(e^{\sqrt{-\lambda} L}-e^{-\sqrt{\lambda} L}\right)}_{\text {not zero }}=0 \quad \text { so } c_{1}=0=c_{2}
\end{aligned}
$$

$\lambda=0: \quad \phi^{\prime \prime}=0$, so the solution is $\phi(x)=a x+b$
boundary: $\phi(0)=b=0$
only the

$$
\phi(L)=a L+0=0 \text { so } a=0
$$ trivial solution

$\lambda>0$: complex roots $r= \pm i \sqrt{\lambda}$
Solution: $\phi(x)=c_{1} \sin (\sqrt{\lambda} x)+c_{2} \cos (\sqrt{\lambda} x)$
boundary: $\quad \phi(0)=0 \Rightarrow 0=c_{1} \sin (0)+c_{2} \cos (0) \Rightarrow 0=c_{2}$

$$
\phi(L)=0 \Rightarrow 0=c_{1} \sin (\sqrt{\lambda} L)
$$

$$
\phi(L)=0 \Rightarrow 0=c_{1} \sin (\sqrt{\lambda} L)
$$

We want $c_{1} \neq 0$ to obtain a nontrivial solution.
What does this imply about λ ? To be continued...

