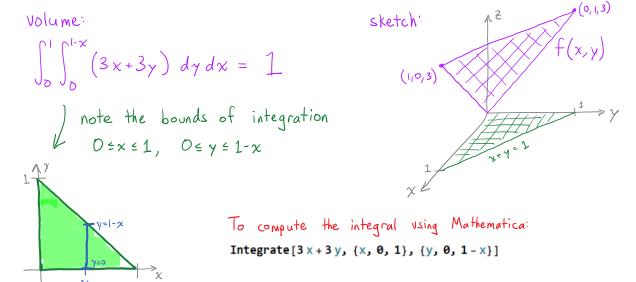
From last time:

- 4. Let *X* and *Y* have joint pdf f(x, y) = 3x + 3y for $0 \le x$, $0 \le y$, and $x + y \le 1$.
- (a) Sketch the joint pdf and verify that the volume underneath is 1.



(b) What values of *X* and *Y* are most likely? What values are not so likely?

(c) Compute the following, using technology to evaluate integrals:

•
$$E(X+Y)$$

$$E(X+Y) = \int_0^1 \int_0^{+x} (x+y)(3x+3y) dy dx = \boxed{\frac{3}{4}}$$
Integrate[(x+y) (3x+3y), {x, 0, 1}, {y, 0, 1-x}]

•
$$E(XY)$$
 $E(XY) = \int_0^1 \int_0^{1-x} (xy)(3x+3y) dy dx = \boxed{\frac{1}{10}}$

$$f_{X}(x) = \int_{0}^{1-x} (3x + 3y) dy = \frac{3}{2} (1-x^{2}), \quad 0 \le x \le 1$$

$$E(X) = \int_{0}^{1} x \cdot \frac{3}{2} (1-x^{2}) dx = \boxed{\frac{3}{8}}$$

•
$$E(Y)$$

$$f_{Y}(y) = \int_{0}^{1-y} (3x + 3y) dx = \frac{3}{2}(1-y^{2}), \quad 0 \le y \le 1,$$

$$E(Y) = \int_{0}^{1} y \cdot \frac{3}{2}(1-y^{2}) dy = \boxed{\frac{3}{8}}$$

(d) What is Cov(X, Y)?

$$Cov(X,Y) = E(XY) - E(X)E(Y) = \frac{1}{10} - \frac{3}{8} \cdot \frac{3}{8} = \frac{-13}{320}$$

New worksheet for today:

1. How do E(X) and E(Y) relate to E(X+Y) and E(XY)? Does independence play a role?

$$E(X+Y)=E(X)+E(Y)$$
 by linearity of expectation, regardless of whether X and Y are independent or not.

If X and Y are independent, then
$$E(XY) = E(X)E(Y)$$
.
(The converse is not true!)

- 2. Let $X \sim \text{Unif}[-1,1]$ and $Y = X^2$.
- (a) Compute E(X), E(Y), and E(XY). Does E(XY) = E(X)E(Y)?

$$E(X) = O, \qquad E(Y) = E(X^{2}) = \int_{-1}^{1} \chi^{2} \cdot \frac{1}{2} dx = \frac{1}{6} \chi^{3} \Big|_{-1}^{1} = \frac{1}{3}$$

$$E(XY) = E(X^{3}) = \int_{-1}^{1} \chi^{3} \cdot \frac{1}{2} dx = \frac{1}{8} \chi^{4} \Big|_{-1}^{1} = O$$
Yes, $E(XY) = E(X) E(Y)$

(b) Are *X* and *Y* independent? Why or why not?

- **I.** Two standard, fair dice are rolled. Let X_1 and X_2 be the numbers that appear on the dice.
- **II.** An urn contains balls labeled 1, 2, 3, 4, 5, 6. Let Y_1 and Y_2 be the numbers on two balls drawn without replacement from the urn.
- 3. What is the distribution of X_i ? How about the distribution of Y_i ?

4. What are $E(X_i)$ and $Var(X_i)$? How about $E(Y_i)$ and $Var(Y_i)$?

$$E(X_i) = \frac{7}{2}, \qquad E(X_i)^2 = \frac{1}{6}(1+9+9+16+25+36) = \frac{91}{6}$$

$$Var(X_i) = \frac{91}{6} - (\frac{7}{2})^2 = \frac{35}{12}$$

Since Xi and Yi have the same distribution,

$$E(Y_i) = \frac{7}{2}$$
 and $Var(Y_i) = \frac{35}{12}$

5. What are $E(X_1 + X_2)$ and $Var(X_1 + X_2)$?

By linearity,
$$E(X_1 + X_2) = E(X_1) + E(X_2) = 7$$

Since X_1 and X_2 are independent,
 $Var(X_1 + X_2) = Var(X_1) + Var(X_2) = \frac{35}{6}$

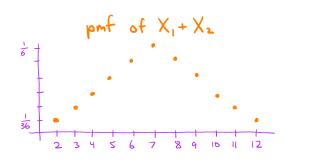
6. What and $E(Y_1 + Y_2)$ and $Var(Y_1 + Y_2)$?

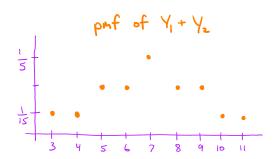
By linearity,
$$E(Y_1 + Y_2) = E(Y_1) + E(Y_2) = 7$$

Since Y_1 and Y_2 are dependent:
 $Var(Y_1 + Y_2) = Var(Y_1) + Var(Y_2) + 2 Cov(Y_1, Y_2)$
 $= \frac{35}{12} + \frac{35}{12} + 2(\frac{-7}{12}) = \frac{56}{12} = \frac{14}{3}$
 $Cov(Y_1, Y_2) = E(Y_1 Y_2) - E(Y_1)E(Y_2) = \frac{35}{3} - \frac{7}{2} \cdot \frac{7}{2} = -\frac{7}{12}$

Possible products:

7. Sketch the pmfs of $X_1 + X_2$ and $Y_1 + Y_2$. How does this help make sense of the means and variances that you found for these sums?





The means are the same, but the distribution of $X_1 + X_2$ is more spread out and thus has larger variance.

8. Generalize to rolls of n dice: find $E(X_1 + \cdots + X_n)$ and $Var(X_1 + \cdots + X_n)$.

$$E(X_1 + \dots + X_n) = E(X_1) + \dots + E(X_n) = \frac{7n}{2}$$
by independence,
$$Var(X_1 + \dots + X_n) = Var(X_1) + \dots + Var(X_n) = \frac{35n}{12}$$

9. Similarly, generalize to choosing n balls from the urn. Find $E(Y_1 + \cdots + Y_n)$ and $Var(Y_1 + \cdots + Y_n)$.

As before,
$$E(Y_1 + \cdots + Y_n) = \frac{7n}{2}$$

However, now
$$Var\left(Y_1 + \dots + Y_n\right) = \sum_{i=1}^n Var(Y_i) + 2 \sum_{i \neq j} Cov(Y_i, Y_j)$$

$$= \frac{35n}{12} + 2 \frac{n^2 - n}{2} \left(-\frac{7}{12}\right) = \frac{35n - 7n^2 + 7n}{12} = \frac{42n - 7n^2}{12} = \frac{7n(6-n)}{12}$$

Note that if n=6, the variance is zero