Chebyshev's Inequality: Let X be a discrete random variable with mean μ and standard deviation σ . For any $k \ge 1$,

$$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}.$$

In words, the probability that *X* is at least *k* standard deviations away from its mean is at most $\frac{1}{k^2}$.

1. Verify that Chebyshev's Inequality holds with k=2 for the random variable X from Problem 4 from the previous class, using the value k=2. That is, check that $P(|X-\mu| \ge k\sigma) \le \frac{1}{k^2}$.

Recall
$$M_X = 6.6$$
 and $\sigma_X = \sqrt{5.44} \approx 2.33$

Consider: $P(|X-6.6| \ge 2(2.33))$

$$= P(|X-6.6| \ge 4.66)$$

$$= P(|X-6.6| \ge 4.66)$$

$$= P(X \le 1.94 \text{ or } X \ge 11.26)$$

$$= O \quad \text{(Since } X \text{ takes no values less than 4 or greater than 10.)}$$

Since $P(|X-M| \ge 2\sigma) = O$, which is less than $\frac{1}{2^2} = \frac{1}{k^2}$, we see that Chebyshev's inequality holds in this case.

- 2. The number of equipment breakdowns in a manufacturing plant averages 4 per week, with standard deviation 0.7 per week.
 - (a) Find an interval that includes at least 90% of the weekly figures for the number of breakdowns.

Apply Chebyshev's Inequality with
$$k$$
 that solves $\frac{1}{k^2} = 0.2$.

That is $k = \sqrt{10} \approx 3.16$.

Probability > $1 - \frac{1}{k^2}$

We want: $1 - \frac{1}{k^2} \ge 0.9$

Chebyshev's Inequality then says:

$$P(|X-4| \ge 3.16 (0.7)) = P(|X-4| \ge 2.21)$$

= $P(X \le 1.79 \le X \ge 6.21) \le 0.1$

Take the complement to flip the inequality: P(1.79 < X < 6.21) > 0.9

So the interval (1.79, 6.21) includes at least 90% of the numbers of weekly breakdowns.

(b) A plant supervisor promises that the number of breakdowns will rarely exceed 7 in a one-week period. Is the supervisor justified in making this claim? Why?

From part (a), we see that 90% of weeks have less than 7 breakdowns.

We can do even better if we apply Chebyshev's Inequality with k=5: $P(|X-4| \ge 5(0.7)) = P(X \le 0.5 \le X \ge 7.5) = P(X=0) + P(X>7) \le \frac{1}{5^2}$ So $P(X>7) \le \frac{1}{25} = 0.04$.

Thus, the probability of more than 7 breakdowns in a week is not greater than 0.04. The supervisor's claim seems justified.

- 3. Suppose that 45% of the phone calls you receive are scam calls. Assume that the probability of a scam call is independent from one call to the next.
 - (a) Let X = 1 if the next call you receive is from a scam call, and X = 0 otherwise. What type of random variable is X? What are its mean and standard deviation?

 $X \sim \text{Bernoulli}$ with p = 0.45, or equivalently $X \sim \text{Bin}(1, 0.45)$. E(X) = 0.45, $\sigma_{X} = \sqrt{(0.45)(0.55)} = 0.497$

(b) Let Y be the number of scam calls in the next 40 phone calls. What type of random variable is Y? Sketch the pmf of Y.

Y~ Bin (40, 0.45)

0.12 0.10 0.08 0.06 0.04 0.02 0 30 40 x

(c) What are the mean and standard deviation of *Y*?

$$E(Y) = 40(0.45) = 18$$

$$\sigma_{Y} = \sqrt{40(0.45)(0.55)} = 3.14$$

(d) Suppose that you lose 30 seconds of your time every time a scammer calls your phone. What are the expected value and standard deviation of the amount of time you will lose over the next 40 phone calls?

Let
$$Z=30\,\mathrm{Y}$$
 be the number of seconds you lose.
Then $E(Z)=30\,E(\mathrm{Y})=540$ seconds, and $\sigma_z=30\,\sigma_\mathrm{Y}=94$ seconds.

4. A coin that lands on heads with probability *p* is flipped ten times. Given that a total of 6 heads results, what is the conditional probability that the first three flips are heads, tails, heads (in that order)?

- 5. Among persons donating blood to a clinic, 85% have Rh⁺ blood. Six people donate blood at the clinic on a particular day.
 - (a) Find the probability that at most three of the six have Rh^+ blood.

- (b) Find the probability that at most one of the six does not have Rh⁺ blood.
- (c) What is the probability that the number of Rh⁺ donors lies within two standard deviations of the mean number?
- (d) The clinic needs six Rh⁺ donors on a certain day. How many people must donate blood to have the probability of obtaining blood from at least six Rh⁺ donors over 0.95?

BONUS: Let $X \sim \text{Bin}(n, p)$. Show that E(X) = np.

$$E(X) = \sum_{x=1}^{n} x \binom{n}{x} p^{x} (1-p)^{n-x} = np \sum_{x=1}^{n} x \frac{(n-i)!}{x! (n-x)!} p^{x-i} (1-p)^{n-x}$$

$$= np \sum_{x=1}^{n} \frac{(n-i)!}{(x-i)! (n-x)!} p^{x-i} (1-p)^{n-x}$$

$$= np \sum_{j=0}^{n-1} \frac{(n-i)!}{j! (n-j-i)!} p^{j} (1-p)^{n-j-i}$$

$$= np \sum_{j=0}^{n-1} \binom{n-i}{j} p^{j} (1-p)^{n-j-i}$$

$$= np (p + (1-p))^{n-j-i}$$
binomial theorem
$$= np (1)^{n-j-i} = np$$

BONUS: A system consists of n components, each of which will independently function with probability p. The system will operate effectively if at least one-half of its components function. For what values of p is a 5-component system more likely to operate than a 3-component system?

Let
$$X \sim Bin(5, p)$$
, The probability that a 5-component system functions effectively is $P(X \ge 3)$. Similarly, let $Y \sim Bin(3, p)$. The probability that a 3-component system functions effectively is $P(Y \ge 2)$. Thus, we want p such that:
$$P(X \ge 5) > P(Y \ge 2)$$
$$P(X = 3) + P(X = 4) + P(X = 5) > P(Y = 2) + P(Y = 3)$$
$$10 p^{3}(1-p)^{2} + 5p^{4}(1-p) + p^{5} > 3p^{2}(1-p) + p^{3}$$

Simplify to obtain:

$$3(p-1)^{2}(2p-1) > 0$$

$$p > \frac{1}{2}$$

A 5-component system is more likely than a 3-component system to operate effectively if $p > \frac{1}{2}$.