Sections 2.3 and 2.4 Day 7 The next two problems require **Chebyshev's Inequality**: Let X be a discrete random variable with mean μ and standard deviation σ . For any $k \geq 1$, $$P(|X - \mu| \ge k\sigma) \le \frac{1}{k^2}.$$ In words, the probability that X is at least k standard deviations away from its mean is at most $\frac{1}{k^2}$. 1. Verify that Chebyshev's Inequality holds with k=2 for the random variable X from Problem 4 from the previous class. That is, check that $P(|X - \mu| \ge 2\sigma)$ is less than $\frac{1}{(2)^2}$. - 2. The number of equipment breakdowns in a manufacturing plant averages 4 per week, with a standard deviation of 0.7 per week. - (a) Find an interval that includes at least 90% of the weekly figures for the number of breakdowns. - (b) A plant supervisor promises that the number of breakdowns will rarely exceed 7 in a one-week period. Is the supervisor justified in making this claim? Why? | 3. | Suppose that 45% of the phone calls you receive are scam calls. Assume that the probability of a scam call is independent from one call to the next. | | | | |----|--|--|--|--| | | (a) Let $X=1$ if the next call you receive is a scam call, and let $X=0$ otherwise. What type of random variable is X ? What are its mean and standard deviation? | | | | | | (b) Let Y be the number of scam calls in the next 40 phone calls. What type of random variable is Y ? Sketch the pmf of Y . | | | | | | (c) What are the mean and standard deviation of Y ? | | | | | | (d) Suppose that you lose 30 seconds of your time every time a scammer calls your phone. What is the expected value and standard deviation of the amount of time you will lose over the next 40 phone calls? | | | | | 4. | | in that lands on heads with probability p is flipped ten times. Given that a total of 6 heads results, t is the conditional probability that the first three flips are $heads$, $tails$, $heads$ (in that order)? | |----|-----|---| | 5. | | ong persons donating blood to a clinic, 85% have Rh ⁺ blood. Six people donate blood at the clinic particular day. | | | (a) | Find the probability that at most three of the six have Rh ⁺ blood. | | | (b) | Find the probability that at most one of the six does not have Rh ⁺ blood. | | | (c) | What is the probability that the number of Rh ⁺ donors lies within two standard deviations of the mean number? | | | (d) | The clinic needs six $\mathrm{Rh^+}$ donors on a certain day. How many people must donate blood to have the probability of obtaining blood from at least six $\mathrm{Rh^+}$ donors over 0.95? | | * | BONUS: Let $X \sim \text{Bin}(n, p)$. Show that $E(X) = np$. | |---|--| | | Hint: Write $E(X)$ as a sum and factor out np . Then use the binomial theorem to show that the sum equals 1. | \bigstar BONUS: A system consists of n components, each of which will independently function with probability p. The system will operate effectively if at least one-half of its components function. For what values of p is a 5-component system more likely to operate effectively than a 3-component system?