Definition of Independent Events: P(A | B) = P(A)

Proposition: A, B independent : FF P(AnB) = P(A) P(B)

- 7. A sequence of n independent trials are to be performed. Each trial results in a success with probability p and a failure with probability 1 p. What is the probability that...
- (a) ...all trials result in successes?

Let A; be the event that the ith trial results in success.

By independence: $P(n \text{ successes}) = P(A_1 \cap A_2 \cap \dots \cap A_n) = P(A_n)P(A_2) \dots P(A_n)$ $= p \cdot p \dots p = p^n$

(b) ...at least one trial results in a success?

Complement: P(no success) = P(A', n A'z n...n A') = (1-p)^n

Thus: P(at least 1 success) = 1 - P(no success) = 1 - (1-p)^n

(c) ... exactly k trials result in successes?

Simplification: P(A, n Az n... n Ak n Akun A x n. n An) = pk (1-p) n-k
first k successes remaining n-k failures

How many different ways can I get k siccesses and n-k failures?

All arrangements occur with prob. $p^{k}(1-p)^{n-k}$ So'. $P(exactly | k | heads) = {n \choose k} p^{k}(1-p)^{n-k}$

8. If *A* and *B* are independent events with positive probability, show that they cannot be mutually exclusive.

If one happens, the other does not

	Assume	A, B are mu	tually exclusive			
	It	A occurs, +	her B connst.			
		knowledge of		ability of B.	$P(B A) = O \neq$	$\mathcal{P}(\boldsymbol{\beta})$
	Thu	s, A and B an	de pendent.			
f	Pair wise 1	ndependence:	$P(A \cap B) = P$	(A)b(B)		
/		are Mutually				
	P($(A \cap B) = P(A)P($	· ·	= P(A)P(c)		
		P(BnC)	= b(B) b(c)			
	and	P(An Bnc) =	P/A/P/R/P/C)			
	CAYICA	T (An anc)	- rayitajite			