Problems 1 - 7: in-class discussion

8. Basic set theory is important for probability. Suppose the "universe" (the set of all objects under consideration) is $U = \{a, b, c, d, e\}$. Let $S = \{a, b, c\}$ and $T = \{c, d\}$.

Write the contents of each of the following sets:

SnT =
$$\{c\}$$
 This is the INTERSECTION:
the set of items in both S and T.
SUT = $\{a,b,c,d\}$ This is the UNION:
the set of items in either S or T.
S' = $\{d,e\}$ This is the COMPLEMENT of S:
the set of items not in S.
 $\emptyset = \{\}$ This is the EMPTY SET.
SnT' = $\{a,b,c\}$ $\cap \{a,b,e\} = \{a,b\}$

- 9. For each of the following experiments, state the sample space and any three events:
- (a) A coin is flipped until heads appears, and the number of flips is recorded.

There are many ways to write the sample space. For example:
$$S = \{H, TH, TTH, TTTH, ...\}$$
 or $S = \{1, 2, 3, 4, ...\}$ or $S = \{1, 2, 3, 4, ...\}$ outcome that heads never appears some events: $\{1\}, \{2,4,6,8,...\}, \{2,3,5,7\}$

(b) A real number is selected between 0 and 1.

S is the interval
$$(0,1) = \{x \mid 0 < x < 1\}$$

some events: $\{\frac{1}{2}\}$, $(0,\frac{1}{2})$, $(\frac{1}{7},\frac{3}{7})$

10. Let *A* and *B* be some events in a sample space. Draw Venn diagrams to illustrate each of the following events:

How do your diagrams illustrate one of De Morgan's Laws?

$$(A \cap B)' = A' \cup B'$$
 = the complement of an intersection is a union of complements