PRIMES CONTECTURES

• Conjecture A. Every even integer greater than 2 is the sum of two primes.

GOLDBACH'S CONJECTURE

no counterexample

• Conjecture B. For every N, the number of nonnegative integers less than N with an even number of prime factors is less than the number of nonnegative integers less than N with an odd number of prime factors. For this, prime factors are counted with multiplicity; e.g., $24 = 2^3 \cdot 3$ has 4 prime factors, while $588 = 2^2 \cdot 3 \cdot 7^2$ has 5 prime factors.

POLYA'S CONTECTURE

• Conjecture C. For every positive integer n, there exists at least one prime between n^2 and $(n+1)^2$. (EGENRE'S CONJECTURE no counterexample known

• Conjecture D. All odd numbers greater than 1 are either prime, or can be expressed as the sum of a prime and twice a square.

Countrexamples: 5777 and 5993

PRIME COUNTING FUNCTION:

 $\pi(x) = number of primes <math>\leq x$

examples: $\pi(5) = 3$ primes: 2, 3, 5

T(12) = 5

2, 3, 5, 7, 10

Fast implementation:

primes list = $\{2, 3, 5, 7, 11, 13, 17, ...\}$

Counts = {0,1,2,2,3,3,4,4,4,...,

Density of primes near x:

What fraction of numbers near x are prine?

one idea:	$\frac{\pi(x+d)-\pi(x)}{d}$	inher of primes p × <p <="" th="" x+d<=""></p>
OF:	$\pi (x+d) - \pi (x-d)$ $2d$	
	prime density fa	Garss: $ \text{prime density} \approx \frac{1}{\log(x)} $
	X	
prime Density [x_, (* use stored	d_{-}]:= Module $\{\xi,\xi\}$ values $\pi(x)$ to estimate	$\frac{\pi(x+d)-\pi(x)}{d}$
density Vals = Table	[prime Density [n, 100], {	n, 0, 1000 3]
	rounds x down to an i	