We have observed $\quad \frac{F_{n}}{F_{n-1}} \rightarrow 1.618=\phi$
Conjecture: $\lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n-1}}=\phi=1.618 \ldots$
Proof: Assume that $\lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n-1}}$ exists, and let $x=\lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n-1}}$
Recursive definition: $\quad F_{n}=F_{n-1}+F_{n-2}$
Divide:

$$
\begin{aligned}
& \text { n: } \quad F_{n}=F_{n-1}+F_{n-2} \\
& \lim _{n \rightarrow \infty} \frac{F_{n}}{F_{n-1}}=1+\lim _{n \rightarrow \infty} \frac{1}{\lim _{n \rightarrow \infty} \frac{F_{n-2}}{F_{n-1}}}=\frac{1}{x}
\end{aligned}
$$

$$
x=1+\frac{1}{x}
$$

$$
x^{2}=x+1
$$

$$
x^{2}-x-1=0
$$

Quadratic Formub: $x=\frac{1 \pm \sqrt{1-4(-1)}}{2}=\frac{1 \pm \sqrt{5}}{2}$
We know $\quad x>0$, so $x=\frac{1+\sqrt{5}}{2}=1.618 \ldots=\phi$

$$
F_{n}^{2}-F_{n+1} F_{n-1}=(-1)^{n-1}=(-1)^{n+1}
$$

Verification 1: Lists

$$
\begin{aligned}
& n=2 \quad F_{2}^{2}-F_{3} F_{1}=-1 \\
& n=3 \quad F_{3}^{2}-F_{4} F_{2}=1 \\
& n=4 \quad F_{4}^{2}-F_{5} F_{3}=-1 \\
& F_{m-1}^{2}-F_{m} F_{n-2}=(-1)^{m-1} \\
& \text { fibSeraved-fibat fib } \\
& \text { fibioduct }
\end{aligned}
$$

Verification 2: modules

Proof: that $F_{n}^{2}-F_{n-1} F_{n+1}=(-1)^{n+1}$

$$
\begin{gathered}
F_{n-1} F_{n+1}-F_{n}^{2}=\operatorname{det}\left[\begin{array}{ll}
F_{n+1} & F_{n} \\
F_{n} & F_{n-1}
\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]^{n}=\left(\operatorname{det}\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\right)^{n}=(-1)^{n} \\
{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
F_{3} & F_{2} \\
2 & F_{1}
\end{array}\right]}
\end{gathered}
$$

induction: $\left[\begin{array}{ll}F_{n} & F_{n-1} \\ F_{n-1} & F_{n-2}\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}E_{2} F_{n-1} & F_{n} \\ E_{n-1} F_{n-2} & F_{n-1}\end{array}\right]=\left[\begin{array}{ll}F_{n+1} & F_{1} \\ F_{n} & F_{n-1}\end{array}\right]$
example

$$
\begin{aligned}
& \text { compute }\left[n_{-}, r_{-}\right]:=\operatorname{Modte}[\ldots \\
& \quad] \\
& \text { Table } \left.\left[\begin{array}{c}
\text { compute }[n, 2] \\
1 \\
r=2
\end{array}\right\},\{n, 1,100\}\right]
\end{aligned}
$$

