
Kernel: SageMath 10.7

Three-Dimensional Random Walks
MATH 242 Modern Computational Mathematics

The following code cell generates a 3D random walk and draws it using the Sage line3d function.
Note that the drawing is interactive -- you can rotate it and zoom in and out.

In [1]:

Out[1]:

ⓘ

How frequently do 3D random walks return to the origin?

define the possible moves at each step of the random walk

dirs = matrix([[1,0,0],[-1,0,0],[0,1,0],[0,-1,0],[0,0,1],[0,0,-1]])

define the number of steps to take

numSteps = 200

set up a numpy 2-D array to store the locations visited.

locations = zero_matrix(numSteps, 3) # numSteps rows, 2 columns

#print(locations)

take steps

for i in range(numSteps):

 r = randrange(6)

 move = dirs[r] # direction to move

 locations[i] = locations[i-1] + move # next location

draw the random walk

line3d(locations, opacity=0.8, thickness=4, color="green")

11/25/25, 1:26 PM 3D_random_walks.ipynb

about:blank 1/4

This next code cell generates a 3D random walk, stopping when it either returns to the origin or when it
reaches some specified maximum number of steps.

If the random walk returns to the origin, then this function returns the number of steps that the random
walk took to get back to the origin.

If the random walk does not return to the origin in maxSteps steps, then this function returns

False .

In [2]:

In [4]:

Out[4]: (0, 0, -1)

(-1, 0, -1)

(-1, 0, -2)

(-2, 0, -2)

(-2, 1, -2)

(-2, 0, -2)

(-2, 0, -3)

(-1, 0, -3)

(-1, -1, -3)

(0, -1, -3)

(0, -1, -4)

(-1, -1, -4)

(-1, -2, -4)

(-1, -3, -4)

(-2, -3, -4)

(-2, -3, -3)

(-1, -3, -3)

generate a 3D random walk until it returns to the origin or maxSteps

steps is reached

return value:

number of steps, if random walk returns to the origin

False, if random walk does not return to the origin within maxSteps

steps

note that this function does NOT store the list of locations visited

def stepsToReturn3D(maxSteps):

 # define the possible moves at each step of the random walk

 dirs = matrix([[1,0,0],[-1,0,0],[0,1,0],[0,-1,0],[0,0,1],[0,0,-1]])

 # initialize a vector to store the current location

 loc = vector([0,0,0])

 # take steps

 for i in range(maxSteps):

 r = randrange(6)

 move = dirs[r] # direction to move

 loc = loc + move # next location

 #print(loc)

 # is the random walk at the origin?

 if loc[0] == 0 and loc[1] == 0 and loc[2] == 0:

 return i

 # if we get here, then random walk did not return to the origin

 return False

stepsToReturn3D(20)

11/25/25, 1:26 PM 3D_random_walks.ipynb

about:blank 2/4

(0, -3, -3)

(0, -3, -4)

(0, -4, -4)

False

What proportion of 3D random walks return to the origin within 10 steps?

In [0]:

In [0]:

What proportion of 3D random walks return to the origin within 100 steps?

In [4]:

Out[4]: 0.308000000000000

In [0]:

What proportion of 3D random walks return to the origin within 1000 steps?

In [5]:

Out[5]: 0.334000000000000

In [0]:

What proportion of 3D random walks return to the origin within 10,000 steps?

In [0]:

In [0]:

Try 10 million steps

In-class "distributed computing" activity

In [6]:

numWalks = 1000

results = [stepsToReturn3D(100) for i in range(numWalks)]

#print(results)

numReturn = sum([1 for r in results if r > 0])

numReturn/numWalks.n()

numWalks = 1000

results = [stepsToReturn3D(1000) for i in range(numWalks)]

#print(results)

numReturn = sum([1 for r in results if r > 0])

numReturn/numWalks.n()

results = [stepsToReturn3D(10^7) for i in range(10)]

11/25/25, 1:26 PM 3D_random_walks.ipynb

about:blank 3/4

Out[7]: [False, False, False, 115, False, False, False, False, 5, False]

Out[10]: 0.271428571428571

results

nums = [2,3,2,1,0,3,3,5,1,4,4,4,3,3]

sum(nums)/(10*len(nums)).n()

11/25/25, 1:26 PM 3D_random_walks.ipynb

about:blank 4/4

