11/25/25, 1:26 PM

In [1]:

Out[1]:

about:blank

3D_random_walks.ipynb

Kernel: SageMath 10.7

Three-Dimensional Random Walks

MATH 242 Modern Computational Mathematics

The following code cell generates a 3D random walk and draws it using the Sage 1line3d function.
Note that the drawing is interactive - you can rotate it and zoom in and out.

define the possible moves at each step of the random walk
dirs = matriX([[11010]1['1i010]i[Orlio]i[oi'lio]i[Olorl]r[oloi'l]])

define the number of steps to take
numSteps = 200

set up a numpy 2-D array to store the locations visited.
locations = zero matrix(numSteps, 3) # numSteps rows, 2 columns
#print(locations)

take steps
for i in range(numSteps):
r = randrange(6)
move = dirs[r] # direction to move
locations[i] = locations[i-1] + move # next location

draw the random walk
line3d(locations, opacity=0.8, thickness=4, color="green")

How frequently do 3D random walks return to the origin?

1/4

11/25/25, 1:26 PM 3D_random_walks.ipynb
This next code cell generates a 3D random walk, stopping when it either returns to the origin or when it
reaches some specified maximum number of steps.

If the random walk returns to the origin, then this function returns the number of steps that the random
walk took to get back to the origin.

If the random walk does not return to the origin in maxSteps steps, then this function returns
False .

In [2]: 4 generate a 3D random walk until it returns to the origin or maxSteps

steps is reached
return value:

number of steps, if random walk returns to the origin
False, if random walk does not return to the origin within maxSteps
steps

note that this function does NOT store the list of locations visited
def stepsToReturn3D(maxSteps):

define the possible moves at each step of the random walk

dirs = matriX([[11010]1['11010]1[01110]1[01'110]1[01011]1[9101'1]])

initialize a vector to store the current location
loc = vector([0,0,01)

take steps

for i in range(maxSteps):
r = randrange(6)
move = dirs[r] # direction to move
loc = loc + move # next location
#print(loc)

is the random walk at the origin?
if loc[0] == 0 and loc[l] == 0 and loc[2] == 0:
return i

if we get here, then random walk did not return to the origin
return False

In [4]: stepsToReturn3D(20)
Out[4]: (0, 0, -1)
- -1)
-2)
-2)
-2)
-2)
-3)
-3)
-3)
-3)
-4)
1, -4

N v N 8 N~ = =~ =

s s~ s s~ 0~ 0~ 0~
~

1
FRFEFNNNNRFEPR

~ =

1 OO
N oo No R N oNoNo)

1
HFNNRRERFS -

~ s v = 0~ =

-3, -4
-3, -4
-3, -3
-3, -3

about:blank 2/4

AN AN AN AN AN AN AN N N AN AN N N S S S~

~— N N~ ~—

11/25/25, 1:26 PM

In [0]:

In [0]:

In [4]:

Out[4]:

In [0]:

In [5]:

Out[5]:

In [0]:

In [0]:

In [0]:

In [6]:

about:blank

3D_random_walks.ipynb

(G, '3p '3)
(G, '3p '4)
(G, '4p '4)
False

What proportion of 3D random walks return to the origin within 10 steps?

What proportion of 3D random walks return to the origin within 100 steps?

numWalks = 1000

results = [stepsToReturn3D(100) for i in range(numWalks)]
#print(results)

numReturn = sum([1 for r in results if r > 0])
numReturn/numWalks.n()

0.308000000000000

What proportion of 3D random walks return to the origin within 1000 steps?

numWalks = 1000

results = [stepsToReturn3D(1000) for i in range(numWalks)]
#print(results)

numReturn = sum([1 for r in results if r > 0])
numReturn/numWalks.n()

0.334000000000000

What proportion of 3D random walks return to the origin within 10,000 steps?

Try 10 million steps

In-class "distributed computing" activity
results = [stepsToReturn3D(1077) for i in range(10)]

3/4

11/25/25, 1:26 PM 3D_random_walks.ipynb
results

Out[7]: [False, False, False, 115, False, False, False, False, 5, False]

nums = [2,3,2,1,0,3,3,5,1,4,4,4,3,3]
sum(nums)/ (10*len(nums)).n()

Out[10]: 0.271428571428571

about:blank 4/4

