
Kernel: SageMath 10.7

2D Random Walks
MATH 242 Modern Computational Math

Today we will explore how frequently two-dimensional simple random walks return to
the origin.

First, here is a copy of our 2D random walk function from last time.

In [1]:

In [4]:

Out[4]: [0 0]

[1 0]

[1 1]

[2 1]

[1 1]

[1 0]

[1 1]

[2 1]

[2 2]

returns a 2D random walk with a specified number of steps

def randomWalk2D(numSteps):

 # define the possible moves at each step of the random

walk

 dirs = matrix([[0,1],[0,-1],[1,0],[-1,0]])

 # set up a numpy 2-D array to store the locations

visited.

 locations = zero_matrix(numSteps, 2)

 # take steps

 for i in range(1, numSteps):

 r = randrange(4) # random value 0, 1, 2, or 3

 move = dirs[r] # choose the direction at index r

of dirs

 #print(move)

 locations[i] = locations[i-1] + move

 # output the random walk

 return locations

rw = randomWalk2D(30)

print(rw)

[2 1]

[3 1]

[2 1]

[3 1]

[3 0]

[4 0]

[5 0]

[4 0]

[3 0]

[3 -1]

[3 -2]

[4 -2]

[4 -3]

[5 -3]

[6 -3]

[5 -3]

[6 -3]

[6 -4]

[5 -4]

[6 -4]

[5 -4]

In [7]:

Out[7]: (1, 0)

(1, 1)

(1, 1)

(1, 0)

(1, 1)

In [11]:

Out[11]: [0 0]

[0 0]

(0, 0)

True

False

(0, 0)

True

False

for row in rw.rows():

 if row[0] == 1:

 print(row)

testMatrix = zero_matrix(2,2)

print(testMatrix)

for row in testMatrix.rows():

 print(row)

 print(row == 0)

 print(row == (0,0))

As before, there are many different questions we can ask about how often a 2D
random walk returns to the origin.

1. What proportion of 2D random walks return to the
origin at least once in their first steps? How does this
proportion depend on ? How does this compare with

1D random walks?

The following function generates a 2D simple symmetric random walk of at most
numSteps steps. However, if the random walk returns to the origin, the function

stops and returns True . If the random reaches numSteps steps without returning to

the origin, the function returns False .

In [1]:

Testing:

In [4]:

N

N

generate a 2D random walk and return True if it revisits

the origin within numSteps steps

def doesItReturn(numSteps):

 # define the possible moves at each step of the random

walk

 dirs = matrix([[0,1],[0,-1],[1,0],[-1,0]])

 # set up a vector to store the current location

 # note that this does NOT store the list of locations

visited

 loc = vector([0,0]) # [0,0]

 # take steps

 for i in range(1, numSteps):

 r = randrange(4)

 move = dirs[r] # direction to move

 loc = loc + move # next location

 #print(loc)

 if loc[0] == 0 and loc[1] == 0:

 break

 return loc[0] == 0 and loc[1] == 0

doesItReturn(30)

Out[4]: True

The next function simulates a bunch of random walks and returns the number of
them that returned to the origin before a specified number of steps.

In [5]:

Now compute the percentage of random walks of various lengths that return to the
origin and make a plot. Warning: this takes more than 10 minutes to run!

In [6]:

Out[6]: [10, 100, 1000, 10000, 100000, 1000000, 10000000]

[43/100, 27/50, 69/100, 3/4, 37/50, 41/50, 17/20]

In [7]:

simulate numWalks random walks, each with at most

numSteps steps, and count how many return to the origin

def howManyReturn(numWalks, numSteps):

 vals = [doesItReturn(numSteps) for _ in

range(numWalks)]

 return sum(vals) # number of True values

nvals = [10^k for k in range(1,8)]

print(nvals)

numWalks = 100

pctReturn = [howManyReturn(numWalks, n)/numWalks for n in

nvals]

print(pctReturn)

list_plot(list(zip(nvals, pctReturn)), axes_labels=

["number of steps","percent return to origin"],

scale="semilogx", frame=True, size=40)

Out[7]:

Interesting. Is the percentage of walks that return to the origin approaching 100% as
the number of steps increasing?

In [0]:

In [0]:

2. On average, how many times does a 2D random walk
return to the origin in its first steps? How does this
depend on ? How does this compare with 1D random

walks?

In [0]:

In [0]:

N

N

In [0]:

3. What is the probability that a 2D random walk
reaches a distance of from the origin before returning
to the origin? How does this depend on ? How does

this compare with 1D random walks?

In [0]:

In [0]:

In [0]:

4. We previously learned that simple symmetric 1D
random walks return to the origin with probability 1.
What do you think is the probability that a simple
symmetric 2D random walk returns to the origin?

In [0]:

K

K

