In [1]:

In [4]:

Outf4]:

Kernel: SageMath 10.7

2D Random Walks

MATH 242 Modern Computational Math

Today we will explore how frequently two-dimensional simple random walks return to
the origin.

First, here is a copy of our 2D random walk function from last time.

returns a 2D random walk with a specified number of steps
def randomWalk2D(numSteps):

define the possible moves at each step of the random
walk

dirs = matrix([[Oil]i[91'1]7[110]1['119]])

set up a numpy 2-D array to store the locations
visited.
locations = zero matrix(numSteps, 2)

take steps
for 1 in range(1l, numSteps):
r = randrange(4) # random value 0, 1, 2, or 3
move = dirs[r] # choose the direction at index r
of dirs
#print(move)
locations[i] = locations[i-1] + move

output the random walk
return locations

rw = randomWalk2D(30)
print(rw)

0]
0]

NNFRERERRNR RO
[}

1]
1]
1]
1]
0]
0]
0]
0]
0]
1]
2]
2]
-3]
-3]
-3]
-3]
-3]
-4]
4]
-4]
4]

UouvUooOoUooULRA,RARWWWRULIRARWWNWN

In [71: for row in rw.rows():
if row[0] ==
print(row)

Out[7]:

.~~~ o~ o~

1,
1,
1,
1,
1,

HOR RO
N N N e ”

In [11]: testMatrix = zero matrix(2,2)
print(testMatrix)
for row in testMatrix.rows():
print(row)
print(row == 0)
print(row == (0,0))

Out[11]: [0 0]
[0 O]
(0, 0)
True
False
(0, 0)
True
False

In [1]:

In [4]:

As before, there are many different questions we can ask about how often a 2D
random walk returns to the origin.

1. What proportion of 2D random walks return to the
origin at least once in their first /N steps? How does this
proportion depend on /N ? How does this compare with

1D random walks?

The following function generates a 2D simple symmetric random walk of at most
numSteps steps. However, if the random walk returns to the origin, the function
stops and returns True . If the random reaches numSteps steps without returning to
the origin, the function returns False .

generate a 2D random walk and return True if it revisits
the origin within numSteps steps
def doesItReturn(numSteps):

define the possible moves at each step of the random
walk

dirs = matriX([[O,l], [01'1]1[110]7 ['110]])

set up a vector to store the current location

note that this does NOT store the list of locations
visited

loc = vector([0,0]) # [0,0]

take steps

for i in range(l, numSteps):
r = randrange(4)
move = dirs[r] # direction to move
loc = loc + move # next location
#print(loc)
if loc[0] == 0 and loc[1l] == 0O:

break

return loc[0] == 0 and loc[l] == 0
Testing:

doesItReturn(30)

Out[4]:

In [5]:

In [6]:

Out[6]:

In [7]:

True

The next function simulates a bunch of random walks and returns the number of
them that returned to the origin before a specified number of steps.

simulate numWalks random walks, each with at most
numSteps steps, and count how many return to the origin
def howManyReturn(numWalks, numSteps):

vals = [doesItReturn(numSteps) for _ in
range (numwWalks)]

return sum(vals) # number of True values

Now compute the percentage of random walks of various lengths that return to the
origin and make a plot. Warning: this takes more than 10 minutes to run!

nvals = [10”k for k in range(1,8)]

print(nvals)

numWalks = 100

pctReturn = [howManyReturn(numWalks, n)/numWalks for n in
nvals]

print(pctReturn)

[10, 160, 1000, 10000, 100000, 1000000, 10000000]
[43/100, 27/50, 69/100, 3/4, 37/50, 41/50, 17/20]

list plot(list(zip(nvals, pctReturn)), axes labels=
["number of steps","percent return to origin"],
scale="semilogx", frame=True, size=40)

Out[7]:

In [0]:

In [0]:

In [0]:

In [0]:

0.85 1 C

© o ©
~ ~ o
o Ln o
i i i
.

0.65 1

0.60 1

percent return to origin

o o ©

Y Ln Ln

Ln o Ln
i i i

__'llllllllllll

102 103 104 10° 108 107
number of steps

[
=]
T

Interesting. Is the percentage of walks that return to the origin approaching 100% as
the number of steps increasing?

2. On average, how many times does a 2D random walk
return to the origin in its first /N steps? How does this
depend on /N ? How does this compare with 1D random
walks?

In

In

In

In

In

[0]:

[0]:

[0]:

[0]:

[0]:

3. What is the probability that a 2D random walk
reaches a distance of K from the origin before returning
to the origin? How does this depend on K ? How does
this compare with 1D random walks?

4. We previously learned that simple symmetric 1D
random walks return to the origin with probability 1.
What do you think is the probability that a simple
symmetric 2D random walk returns to the origin?

