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Two-Dimensional Random Walks

MATH 242 Modern Computational Math
Today we will start to understand properties of two-dimensional (2D) random walks.

Each position of a 2D random walk is an ordered pair of integers. Thus, a list of
positions of a 2D random walk can be stored as a IN X 2 matrix, where N is the
number of steps in the random walk.

Before we generate 2D random walks, we should practice using matrices in Sage.

mat = matrix( [[1,2,3], [4,5,6], [7,8,9]] )
print(mat)

[1 2 3]

[4 5 6]
[7 8 9]

mat[:2]

mat[:,0]
[1]

[4]
[7]

print( mat.dimensions() )
print( mat.nrows() )
print( mat.ncols() )

(3, 3)

3

3

type( mat )
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Now we can generate a 2D random walk.
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# define the possible moves at each step of the random walk
dirs = matriX( [[Orl]r[01'1]7[179]7['110]] )

# define the number of steps to take
numSteps = 50

# set up a numpy 2-D array to store the locations visited.
locations = zero matrix(numSteps, 2)

# take steps

for i in range(1l, numSteps):
r = randrange(4) # random value 0, 1, 2, or 3
move = dirs[r] # direction to move
locations[i] = locations[i-1] + move

# output the random walk
print(locations)
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We can also plot the random walk. Here, we will make a 2D plot.

=10,

True, xmin=-10, xmax

-5,5])

10, figsize

list plot(locations, plotjoined
ymin=-10, ymax
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Now let's put our 2D random walk code into a function, so we can easily generate
lots of 2D random walks.

In [1]t def randomWalk2D(numSteps):
# define the possible moves at each step of the random
walk
dlrs = matrlX( [[Orl]r[@r_l]r[11011[_119]] )

# set up a numpy 2-D array to store the locations
visited.
locations = zero matrix(numSteps, 2)

# take steps

for 1 in range(1l, numSteps):
r = randrange(4) # random value 0, 1, 2, or 3
move = dirs[r] # direction to move
locations[i] = locations[i-1] + move



# output the random walk
return locations

In [20]: print(randomWalk2D(50))
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[ 2 -9]
[ 2 -8]
[ 2 -7]
[ 2 -6]
[ 2 -5]

Diameter of a 2D Random Walk

Define the width of a 2D random walk to be the maximum difference between any
two x-coordinates attained by the walk. Similarly, define the height of the walk to be
the maximum difference between any two y-coordinates. Define the diameter of the
random walk to be the maximum of its width and height.

What is the average diameter of a 2D random walk after /N steps? How does this
depend on N?

First, a function that takes a 2D random walk (as a list of locations) and returns its
diameter.

# function that takes a 2D random walk (as a list of
locations) and returns its diameter
def diameter2D(walk):

xcoords = walk[:,0]

width = max(xcoords) - min(xcoords)

ycoords = walk[:,1]
height = max(ycoords) - min(ycoords)

return max(width[0], height[0])

Testing:

aWalk = randomWalk2D(30)
print(aWalk)
diameter2D (aWalk)
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Function that computes the average diameter of many random walks, all with the
same number of steps:

In [4]: # function that computes the diameter of a specified number
of random walks, all with the same number of steps
def avgDiameter2D(numSteps, numWalks):
diams = [diameter2D(randomWalk2D(numSteps)) for  in
range (numwWalks) ]
return sum(diams)/numWalks

Now compute the average diameter of 2D random walks for a selection of numbers
of steps.

In [51% nvals = range(10,500,10)
avgDiams = [avgDiameter2D(n,100) for n in nvals]
print(avgDiams)

Out[5]: [311/100, 481/100, 291/50, 189/25, 413/50, 183/20, 254/25,
1103/100, 58/5, 1257/100, 1231/160, 663/50, 348/25, 357/25,
1509/100, 1533/100, 388/25, 1683/100, 427/25, 1701/100,
917/50, 899/50, 466/25, 989/50, 199/10, 1987/100, 1067/50,
2129/100, 211/10, 546/25, 22, 449/20, 473/20, 463/20,



2421/100, 453/20, 2517/100, 606/25, 2529/100, 483/20,
2539/100, 2593/100, 664/25, 1309/50, 2711/100, 2853/100,
2607/100, 2789/100, 2789/100]

Make a plot of the average diameters we just computed:

In [7]: list plot( list(zip(nvals, avgDiams)), axes labels=["number
of steps","average diameter"], frame=True)
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The previous plot looks like it might have a square-root shape, so let's plot the
average diameters squared. Since this plot is nearly linear, the previous plot is
proportional to a square root function.

In [9]: sqDiams = [d~2 for d in avgDiams]

list plot( list(zip(nvals, sgDiams)), axes labels=["number
of steps","squared average diameter"], frame=True)
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Since the slope of the linear plot is approximately 1.6, we conclude that the average
diameter after n steps is approximately 1/ 1.6n. The following plot shows the
avereage diameters along with this square root function.

In [8]: list plot( list(zip(nvals, avgDiams)), axes labels=["number
of steps","average diameter"], frame=True) +
plot(sqrt(l.6*x), (x, 0, 500), color="red")
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Four Quadrants

How likely is it that a 2D random walk visits all four quadrants of the plane within NV
steps? How does this depend on N?

Distinct Points

How many distinct points does a 2D random walk visit, on average, in [N steps?
How does this depend on [N ?
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