
Kernel: SageMath 10.7

Two-Dimensional Random Walks
MATH 242 Modern Computational Math

Today we will start to understand properties of two-dimensional (2D) random walks.

Each position of a 2D random walk is an ordered pair of integers. Thus, a list of
positions of a 2D random walk can be stored as a  matrix, where  is the
number of steps in the random walk.

Before we generate 2D random walks, we should practice using matrices in Sage.

In [21]:

Out[21]: [1 2 3]

[4 5 6]

[7 8 9]

In [5]:

Out[5]: [1 2 3]

[4 5 6]

In [22]:

Out[22]: [1]

[4]

[7]

In [9]:

Out[9]: (3, 3)

3

3

In [10]:

N × 2 N

mat = matrix( [[1,2,3], [4,5,6], [7,8,9]] )

print(mat)

mat[:2]

mat[:,0]

print( mat.dimensions() )

print( mat.nrows() )

print( mat.ncols() )

type( mat )



Out[10]: <class 

'sage.matrix.matrix_integer_dense.Matrix_integer_dense'>

In [11]:

Out[11]: [0 0 0]

[0 0 0]

[0 0 0]

[0 0 0]

[0 0 0]

Now we can generate a 2D random walk.

In [14]:

Out[14]: [ 0  0]

[ 1  0]

[ 1 -1]

[ 1  0]

[ 0  0]

[ 1  0]

[ 1 -1]

[ 2 -1]

[ 2 -2]

[ 2 -3]

[ 2 -4]

[ 3 -4]

[ 3 -5]

[ 2 -5]

[ 2 -6]

[ 1 -6]

[ 1 -7]

zero_matrix(5, 3)

# define the possible moves at each step of the random walk

dirs = matrix( [[0,1],[0,-1],[1,0],[-1,0]] )

# define the number of steps to take

numSteps = 50

# set up a numpy 2-D array to store the locations visited.

locations = zero_matrix(numSteps, 2)

# take steps

for i in range(1, numSteps):

    r = randrange(4)  # random value 0, 1, 2, or 3

    move = dirs[r]    # direction to move

    locations[i] = locations[i-1] + move

    

# output the random walk

print(locations)



[ 1 -8]

[ 1 -7]

[ 0 -7]

[ 1 -7]

[ 1 -6]

[ 2 -6]

[ 3 -6]

[ 3 -5]

[ 3 -4]

[ 2 -4]

[ 1 -4]

[ 1 -3]

[ 0 -3]

[ 1 -3]

[ 2 -3]

[ 2 -2]

[ 3 -2]

[ 3 -3]

[ 3 -2]

[ 3 -1]

[ 3  0]

[ 2  0]

[ 1  0]

[ 2  0]

[ 3  0]

[ 2  0]

[ 2  1]

[ 2  0]

[ 3  0]

[ 3  1]

[ 3  2]

[ 4  2]

[ 4  1]

We can also plot the random walk. Here, we will make a 2D plot.

In [15]: list_plot(locations, plotjoined=True, xmin=-10, xmax=10, 

ymin=-10, ymax=10, figsize=[5,5])



Out[15]:

Now let's put our 2D random walk code into a function, so we can easily generate
lots of 2D random walks.

In [1]: def randomWalk2D(numSteps):

    # define the possible moves at each step of the random 

walk

    dirs = matrix( [[0,1],[0,-1],[1,0],[-1,0]] )

    # set up a numpy 2-D array to store the locations 

visited.

    locations = zero_matrix(numSteps, 2)

    # take steps

    for i in range(1, numSteps):

        r = randrange(4)  # random value 0, 1, 2, or 3

        move = dirs[r]    # direction to move

        locations[i] = locations[i-1] + move



In [20]:

Out[20]: [  0   0]

[  1   0]

[  0   0]

[  1   0]

[  0   0]

[  0  -1]

[ -1  -1]

[ -1   0]

[  0   0]

[  0  -1]

[  0  -2]

[  0  -3]

[  0  -4]

[ -1  -4]

[ -1  -5]

[ -1  -6]

[ -1  -7]

[  0  -7]

[  0  -8]

[  0  -9]

[  0  -8]

[ -1  -8]

[  0  -8]

[  1  -8]

[  1  -9]

[  2  -9]

[  2 -10]

[  1 -10]

[  0 -10]

[  0  -9]

[  1  -9]

[  1  -8]

[  1  -9]

[  0  -9]

[  0 -10]

[  1 -10]

[  1  -9]

[  0  -9]

[  1  -9]

[  0  -9]

[  0  -8]

[  0  -9]

[  1  -9]

[  2  -9]

[  1  -9]

    # output the random walk

    return locations

print(randomWalk2D(50))



[  2  -9]

[  2  -8]

[  2  -7]

[  2  -6]

[  2  -5]

Diameter of a 2D Random Walk

Define the width of a 2D random walk to be the maximum difference between any
two -coordinates attained by the walk. Similarly, define the height of the walk to be
the maximum difference between any two -coordinates. Define the diameter of the

random walk to be the maximum of its width and height.

What is the average diameter of a 2D random walk after  steps? How does this
depend on ?

First, a function that takes a 2D random walk (as a list of locations) and returns its
diameter.

In [2]:

Testing:

In [3]:

Out[3]: [ 0  0]

[ 1  0]

[ 0  0]

[-1  0]

[ 0  0]

[ 0 -1]

[ 0  0]

[ 0 -1]

x

y

N

N

# function that takes a 2D random walk (as a list of 

locations) and returns its diameter

def diameter2D(walk):

    xcoords = walk[:,0]

    width = max(xcoords) - min(xcoords)

    ycoords = walk[:,1]

    height = max(ycoords) - min(ycoords)

    return max(width[0], height[0])

aWalk = randomWalk2D(30)

print(aWalk)

diameter2D(aWalk)



[ 0 -2]

[-1 -2]

[-1 -3]

[-2 -3]

[-2 -2]

[-2 -1]

[-3 -1]

[-3  0]

[-4  0]

[-3  0]

[-3  1]

[-2  1]

[-2  0]

[-2  1]

[-1  1]

[-1  0]

[ 0  0]

[ 0 -1]

[-1 -1]

[-1  0]

[-1 -1]

[ 0 -1]

5

Function that computes the average diameter of many random walks, all with the
same number of steps:

In [4]:

Now compute the average diameter of 2D random walks for a selection of numbers
of steps.

In [5]:

Out[5]: [311/100, 481/100, 291/50, 189/25, 413/50, 183/20, 254/25, 

1103/100, 58/5, 1257/100, 1231/100, 663/50, 348/25, 357/25, 

1509/100, 1533/100, 388/25, 1683/100, 427/25, 1701/100, 

917/50, 899/50, 466/25, 989/50, 199/10, 1987/100, 1067/50, 

2129/100, 211/10, 546/25, 22, 449/20, 473/20, 463/20, 

# function that computes the diameter of a specified number 

of random walks, all with the same number of steps

def avgDiameter2D(numSteps, numWalks):

    diams = [diameter2D(randomWalk2D(numSteps)) for _ in 

range(numWalks)]

    return sum(diams)/numWalks

nvals = range(10,500,10)

avgDiams = [avgDiameter2D(n,100) for n in nvals]

print(avgDiams)



2421/100, 453/20, 2517/100, 606/25, 2529/100, 483/20, 

2539/100, 2593/100, 664/25, 1309/50, 2711/100, 2853/100, 

2607/100, 2789/100, 2789/100]

Make a plot of the average diameters we just computed:

In [7]:

Out[7]:

The previous plot looks like it might have a square-root shape, so let's plot the
average diameters squared. Since this plot is nearly linear, the previous plot is
proportional to a square root function.

In [9]:

list_plot( list(zip(nvals, avgDiams)), axes_labels=["number 

of steps","average diameter"], frame=True)

sqDiams = [d^2 for d in avgDiams]

list_plot( list(zip(nvals, sqDiams)), axes_labels=["number 

of steps","squared average diameter"], frame=True)



Out[9]:

Since the slope of the linear plot is approximately 1.6, we conclude that the average
diameter after  steps is approximately . The following plot shows the
avereage diameters along with this square root function.

In [8]:

n ​1.6n

list_plot( list(zip(nvals, avgDiams)), axes_labels=["number 

of steps","average diameter"], frame=True) + 

plot(sqrt(1.6*x), (x, 0, 500), color="red")



Out[8]:

In [0]:

Four Quadrants

How likely is it that a 2D random walk visits all four quadrants of the plane within 
steps? How does this depend on ?

In [0]:

In [0]:

In [0]:

Distinct Points

How many distinct points does a 2D random walk visit, on average, in  steps?
How does this depend on ?

N

N

N

N



In [0]:

In [0]:

In [0]:


