In [21]:

OQut[21]:

In [5]:

Out[5]:

In [22]:

Out[22]:

In [9]:

Out[9]:

In [10]:

Kernel: SageMath 10.7

Two-Dimensional Random Walks

MATH 242 Modern Computational Math
Today we will start to understand properties of two-dimensional (2D) random walks.

Each position of a 2D random walk is an ordered pair of integers. Thus, a list of
positions of a 2D random walk can be stored as a IN X 2 matrix, where N is the
number of steps in the random walk.

Before we generate 2D random walks, we should practice using matrices in Sage.

mat = matrix([[1,2,3], [4,5,6], [7,8,9]])
print(mat)

[1 2 3]

[4 5 6]
[7 8 9]

mat[:2]

mat[:,0]
[1]

[4]
[7]

print(mat.dimensions())
print(mat.nrows())
print(mat.ncols())

(3, 3)

3

3

type(mat)

Out[10]:

In [11]:

Out[11]:

In [14]:

OQut[14]:

<class

———

oNoNoNoNO]
loNoNoNOoNO]
oNoNoNOoNO

sage.matrix.matrix integer _dense.Matrix_ integer dense'>

zero matrix(5, 3)

Now we can generate a 2D random walk.

—) — —]]] [—— —— —— —— —— —— —— ——

define the possible moves at each step of the random walk
dirs = matriX([[Orl]r[01'1]7[179]7['110]])

define the number of steps to take
numSteps = 50

set up a numpy 2-D array to store the locations visited.
locations = zero matrix(numSteps, 2)

take steps

for i in range(1l, numSteps):
r = randrange(4) # random value 0, 1, 2, or 3
move = dirs[r] # direction to move
locations[i] = locations[i-1] + move

output the random walk
print(locations)

FENNWWNNNNRERORRFREFEO
1
N

o W e W e W e I e W e B e B e B e e T e B e B e B e e e e B e e e B e T e e T e B e e B e N e B e T e B e B e B |

[Ny S Ny NS [y Sy WOy S—y W——Ty S— WS—_—Ty S— WU—y S—y WU_—py SU—y NU—y SU— y SS_—y SU—y SU—y SU— gy S y SS— gy SOy Su—'py Sy Su— gy SOy SU—— gy S y Su— gy SS— y S—" y S—'

We can also plot the random walk. Here, we will make a 2D plot.

=10,

True, xmin=-10, xmax

-5,5])

10, figsize

list plot(locations, plotjoined
ymin=-10, ymax

In [15]:

OQut[15]: 10 -

—10 =5 | 5 10

_1{] -

Now let's put our 2D random walk code into a function, so we can easily generate
lots of 2D random walks.

In [1]t def randomWalk2D(numSteps):
define the possible moves at each step of the random
walk
dlrs = matrlX([[Orl]r[@r_l]r[11011[_119]])

set up a numpy 2-D array to store the locations
visited.
locations = zero matrix(numSteps, 2)

take steps

for 1 in range(1l, numSteps):
r = randrange(4) # random value 0, 1, 2, or 3
move = dirs[r] # direction to move
locations[i] = locations[i-1] + move

output the random walk
return locations

In [20]: print(randomWalk2D(50))
Out[20]: 0]

0]

0]

0]

0]
“1]
“1]

0]

0]
“1]
-2]
23]
_4]
_4]
-5]
-6]
-7
-7
-8]
-9]
-8]
-8]
-8]
-8]
-9]
-9]
-10]
-10]
-10]
-9]
-9]
-8]
-9]
-9]
-10]
-10]
-9]
-9]
-9]
-9]
-8]
-9]
-9]
-9]
-9]

1 1 1 1 1 1 1
PFNPFRPOOOHRORRHFOORRFMPFFOOR NN EFFEFOHOOOOHRRHFEFRFRPFMFRFOOOOOHR R OORRORRO

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

In [2]:

In [3]:

Out[3]:

[2 -9]
[2 -8]
[2 -7]
[2 -6]
[2 -5]

Diameter of a 2D Random Walk

Define the width of a 2D random walk to be the maximum difference between any
two x-coordinates attained by the walk. Similarly, define the height of the walk to be
the maximum difference between any two y-coordinates. Define the diameter of the
random walk to be the maximum of its width and height.

What is the average diameter of a 2D random walk after /N steps? How does this
depend on N?

First, a function that takes a 2D random walk (as a list of locations) and returns its
diameter.

function that takes a 2D random walk (as a list of
locations) and returns its diameter
def diameter2D(walk):

xcoords = walk[:,0]

width = max(xcoords) - min(xcoords)

ycoords = walk[:,1]
height = max(ycoords) - min(ycoords)

return max(width[0], height[0])

Testing:

aWalk = randomWalk2D(30)
print(aWalk)
diameter2D (aWalk)

e e e

[oNoNoNol ol o)

—

RPORPROOOOO

1~
e

1 N 1
ORFRFFOORFFEFMNMNNNWWRARWWNNNREFEREFEO
=

Ul [N N W W e W e W e W W W W e W e B W W e W W e W N W W Wy |
1

Function that computes the average diameter of many random walks, all with the
same number of steps:

In [4]: # function that computes the diameter of a specified number
of random walks, all with the same number of steps
def avgDiameter2D(numSteps, numWalks):
diams = [diameter2D(randomWalk2D(numSteps)) for in
range (numwWalks)]
return sum(diams)/numWalks

Now compute the average diameter of 2D random walks for a selection of numbers
of steps.

In [51% nvals = range(10,500,10)
avgDiams = [avgDiameter2D(n,100) for n in nvals]
print(avgDiams)

Out[5]: [311/100, 481/100, 291/50, 189/25, 413/50, 183/20, 254/25,
1103/100, 58/5, 1257/100, 1231/160, 663/50, 348/25, 357/25,
1509/100, 1533/100, 388/25, 1683/100, 427/25, 1701/100,
917/50, 899/50, 466/25, 989/50, 199/10, 1987/100, 1067/50,
2129/100, 211/10, 546/25, 22, 449/20, 473/20, 463/20,

2421/100, 453/20, 2517/100, 606/25, 2529/100, 483/20,
2539/100, 2593/100, 664/25, 1309/50, 2711/100, 2853/100,
2607/100, 2789/100, 2789/100]

Make a plot of the average diameters we just computed:

In [7]: list plot(list(zip(nvals, avgDiams)), axes labels=["number
of steps","average diameter"], frame=True)

Out[7]: .
25 - L
- . *
g
"JJED‘ " w
E]
G Lo
-G 1 L
@ 15 - _-'
(@) i .
(8] .
L_ i -
Q | .t
i% 10 .
54
| 160 o 260 - IBDD 400

number of steps

The previous plot looks like it might have a square-root shape, so let's plot the
average diameters squared. Since this plot is nearly linear, the previous plot is
proportional to a square root function.

In [9]: sqDiams = [d~2 for d in avgDiams]

list plot(list(zip(nvals, sgDiams)), axes labels=["number
of steps","squared average diameter"], frame=True)

=)}

o

=]
i

i

2

o
i
.

400 oo

300 -

squared average diameter
S
o

=

o]

]
I
-

Il[;tDI o IEI[I)DI - I3I[I}DI o .4[|}DI
number of steps

Since the slope of the linear plot is approximately 1.6, we conclude that the average
diameter after n steps is approximately 1/ 1.6n. The following plot shows the
avereage diameters along with this square root function.

In [8]: list plot(list(zip(nvals, avgDiams)), axes labels=["number
of steps","average diameter"], frame=True) +
plot(sqrt(l.6*x), (x, 0, 500), color="red")

Out[8]:

In

In

In

In

[0]:

[0]:

[0]:

[O0]:

25~

Psd
=)
PR 1

average diameter
= G

0 o IlﬁDl - I26DI - IBdDI - I460 o ISdD
number of steps

Four Quadrants

How likely is it that a 2D random walk visits all four quadrants of the plane within NV
steps? How does this depend on N?

Distinct Points

How many distinct points does a 2D random walk visit, on average, in [N steps?
How does this depend on [N ?

In [0]:
In [0]:

In [0]:

