11/15/25, 5:36 PM

In [1]:

Out[1]:

In [3]:

Out[3]:

In [6]:

about:blank

2025-11-14 classwork.ipynb

Kernel: SageMath 10.7

Random Walks

MATH 242 Modern Computational Math

Imagine you are standing at the origin of a number line. You flip a fair coin. If the coin lands heads, you
move to +1. If the coin lands tails, you move to -1. You flip the coin again and again. Whenever it lands
heads, you move 1 unit in the positive direction. Whenever it lands tails, you move 1 unit in the negative
direction. Your path on the number line is called a one-dimensional random walk.

What does a one-dimensional random walk look like? Let's create some with Python!

1. Building a Random Walk

Use choice([-1,1]) to simulate one step of the random walk. Try it out:

choice([-1,1])
-1

Now simulate 100 steps of the random walk. Create a list called locations consisting of one hundred
0s. The first 0 is the starting location; the other Os are placeholders for later locations. Compute each
location after the first by choosing a +1 or -1 step at random and adding it to the previous location.

locations = [@]*100 # list of 100 zeros
for i in range(1,100):
move = choice([-1,1]) # current move
locations[i] = locations[i-1] + move
print(locations)

store the next location

[@, '1) '21 '3J '2) '31 '4: _3J '41 '3) '21 '3: '41 '5) '4) '3: '21 '1J '2) '31 '2:
'1) '2: '1: '21 '3) '2) '3: '21 '1: @) 1) 9, 1: 0: '1) @) '1: e: '11 0, '1) '2: '1:
0, '1: @, 1: 2) 1) 2) 1: 2: 3: 4J 3) 2) 3: 4: 5: 4J 5) 4) 5: 4: 3: 2: 1) 0) '1: '2:
'3) _4) _SJ -4J '5) '6) _7J '6J '5J '4) '5) '6J '51 '61 '5) _6J _SJ -4J '5) '4) _3J
'4) '5: '4J '5) '4) '5) _6J '7]

Next, make a plot of the random walk. The horizontal axis will give the number of steps, and the vertical

axis will give the location at each step.

list_plot(locations , plotjoined=True, axes_labels=["steps","location"])

1/6

11/15/25, 5:36 PM

Out[6]:

In [1]:

In [9]:

out[9]:

about:blank

2025-11-14 classwork.ipynb

location

We will need to generate a lot of random walks. To make this easy, write a function that returns a
random walk. Here is the specification for your function:

Function: randomWalk
Input: number of steps

Output: a random walk, returned as a list of positions

def randomWalk(numSteps):
locations = [@]*numSteps # list of 100 zeros
for i in range(1l,numSteps):
move = choice([-1,1]) # current move
locations[i] = locations[i-1] + move # store the next location
return locations

rw = randomWalk(200)
print(rw)

[e) 1) 2: 3: 2: 1: 2) 1) @, '1J '21 '1) @, '1J @, '11 9, '1) '21 '1J '21 '3) '4)
'5) '6) -SJ '41 '51 '4) '3J '4: '31 _4J '5) '65 '71 '61 '5) '6) -SJ '61 -SJ '4) 'SJ
'4) '3) '41 _5) '4) '3) '4: '51 '61 '51 '4) '51 '61 '51 '4) '5: '41 _5) '4) '5) '4:
'3) '4) '31 '4J '3) '41 '5: _4J '51 '4) '51 '4: '51 '6) '5) '4: '31 '2J '1) @, '1:
'2) '1: '2: '11 '2) '1) @, 1: 2: 1: @) 1) 2: 3: 2: 1: @, '1) '2: '11 0, '1) '2: '3:
'4) '5: '4: '3) '2) '3: '4: '33 '2) '1) '2: '1: 0, 1: 0) 1) @, '1: 0, 1) 2) 3: 2:
3) 2) 1) 6} 1J 0: 1) e) _1J @J 1J 0: '1) _2) '1J -2J '3) '2) _3J '4J '5J '4) '5)

2/6

11/15/25, 5:36 PM 2025-11-14 classwork.ipynb
-4, -3, -4, -5, -4, -5, -6, -7, -8, -9, -8, -9, -1@, -9, -8, -7, -6, -5, -6, -7,
'8) _7) '65 -7J '8) '7) '81 '7J '6J '7) -8) _7J '81 '7J '8) _9) '8J -7J '8) '7) '6J
'5) '6: '5]

In [11]: rwplots = [list_plot(randomWalk(100), hue=i/10, plotjoined=True) for i in

range(10)]
rwplot = sum(rwplots)

show(rwplot, axes labels=["steps","location"])

out[11]: |ocation

15 1

10 1

A
Vo \JIXCVE /N s0 Y 100

_1{] -

15

2. Diameter of a Random Walk

The diameter of a random walk is the difference between the maximum and minimum locations in the
walk.

Write a function that computes the diameter of a random walk. The input to your function should be a
random walk (i.e., a list), and your function should return the diameter of the walk.

Note that Python has built-in functions min and max that return the minimum and maximum values

in a list.

In [2]: 4o diameter(aWalk):

return max(aWalk) - min(aWalk)

Test your diameter function and confirm that it works as expected.

about:blank 3/6

11/15/25, 5:36 PM 2025-11-14 classwork.ipynb

In [3]: = randomWalk(30)
print(rw)
diameter(rw)

out[3]: [e, 1, 2, 3, 4, 3, 2,1, 2,1, 0, 1, 2, 1, 2, 1, 0, 1, 2, 3, 4, 5, 4, 3, 2, 1, 0,
1, 2, 1]

5
Now find the average diameter for random walks of a specified number of steps. Write a function

avgDiam that takes two parameters: the number of steps in a random walk, and the number of

random walks to simulate. The function then returns the average diameter of those random walks.

In [4]: def avgDiam(numSteps, numWalks):
diams = [diameter(randomWalk(numSteps)) for i in range(numWalks)]
return sum(diams)/numWalks

In [6]:

avgDiam(20, 10).n()
Out[6]: 6.80000000000000

How does the diameter depend on the number of steps?

Create a plot that shows the average diameter of a random walk as a function of the number of steps.
Make a conjecture for the growth rate of the average diameter.

In [7]¢ qvals = range(10,500,10)
avgDiams = [avgDiam(n,500) for n in nvals]
In [8]: list_plot(list(zip(nvals,avgDiams)), color="green", axes_labels=["number of
steps","average diameter"], frame=True, figsize=4)
OUt[S] . 35 =
-
e

30

25

average diameter
=

100 200 300 400
number of steps

Could the previous graph have the shape of a square-root function? Let's square the values to find out!

about:blank 4/6

11/15/25, 5:36 PM 2025-11-14 classwork.ipynb

In [9]: sqDiams = [d”2 for d in avgDiams]
list_plot(list(zip(nvals,sqgDiams)), color="green", axes_labels=["number of
steps","squared average diameter"], frame=True, figsize=4)

Out[9] E 1200 - =
.E 1000 —: -'_--" :

ﬁ : .i'
@ 800 - O
(@)}] .-"
© 600 e’
S o
I.U 400 ': "+..
D 2009 e
|- 1 .I..
(¥ o 12
= —rr+ g rrv o1 ¢ r [1t & T [1t T 1T
o 100 200 300 400
o number of steps
The squared average diameters are nearly linear! It loks like the slope is approximately % = 2.4 Let's
plot the average diameters along with the graph of y = v/2.4x.
In [10]: list_plot(list(zip(nvals,avgDiams)), color="green", axes_labels=["number of
steps","average diameter"], frame=True, figsize=4) + \
plot(sqrt(2.4*x), (x, 0, 500))
out[10]: 35 -
e]
8 3]
v
= 251
8 59
o 1
@ 15
(= I
M 10 -
[]
w E
5 0
0]

0 100 200 300 400 500
number of steps

The function y = +/2.4x appears to fit our data points fairly well! Thus, it appears that the average

diameter is proportional to the square root of the number of steps!

3. Investigate your own questions!

What questions do you have about one-dimensional random walks? Investigate!

about:blank 5/6

11/15/25, 5:36 PM 2025-11-14 classwork.ipynb

In [0]:

In [0]:

In [0]:

about:blank 6/6

