Linear Systems with Repeated or Zero Eigenvalues

Math 230

Consider the matrix $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ -1 & 3 \end{bmatrix}$.

1. Find the eigenvalues and eigenvectors of ${\bf A}$.

- 2. Find the solution with each of the following initial conditions:
 - (a) $\mathbf{Y}(0) = (1,1)$
 - (b) $\mathbf{Y}(0) = (1, 2)$
 - (c) $\mathbf{Y}(0) = (x_0, y_0)$

3. What do you think the phase portrait looks like for this system?

4. Suppose a 2×2 matrix **B** has only one eigenvalue but *two* linearly independent eigenvectors. What can you say about matrix **B**? (Can you come up with any matrices with this property?)

5. For any matrix **B** that you found above, what is the general solution to $\frac{d\mathbf{Y}}{dt} = \mathbf{B}\mathbf{Y}$?

Consider the matrix $\mathbf{C} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$.

6. Find the eigenvalues and eigenvectors of **C**.

- 7. Find the solution with each of the following initial conditions:
 - (a) $\mathbf{Y}(0) = (2, -2)$
 - (b) $\mathbf{Y}(0) = (3, -1)$
 - (c) $\mathbf{Y}(0) = (x_0, y_0)$

8. What do you think the phase portrait looks like for this system?

9. Suppose a 2×2 matrix **D** has only one eigenvalue, which is zero. What can you say about matrix **D**? (Can you come up with any matrices with this property?)

10. For any matrix **D** that you found above, what is the general solution to $\frac{d\mathbf{Y}}{dt} = \mathbf{DY}$?