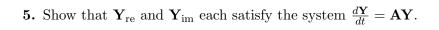
Linear Systems with Complex Eigenvalues

Math 230


Consider the matrix $\mathbf{A} = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.

1. Find the eigenvalues of A. Note that they are complex conjugates.

2. Let λ be the eigenvalue with positive imaginary part. Find an eigenvector V associated with λ .

3. Write down the complex-valued "straight-line" solution $\mathbf{Y}_1 = \mathbf{V}e^{\lambda t}$ to the system $\frac{d\mathbf{Y}}{dt} = \mathbf{A}\mathbf{Y}$.

4. Use Euler's formula, $e^{i\theta} = \cos \theta + i \sin \theta$, to expand this solution. Then collect the real and imaginary parts so that $\mathbf{Y}_1 = \mathbf{Y}_{\text{re}} + i \mathbf{Y}_{\text{im}}$, where \mathbf{Y}_{re} and \mathbf{Y}_{im} are real-valued functions.

6. Write down the general solution to $\frac{d\mathbf{Y}}{dt} = \mathbf{AY}$.

7. Find a solution with the initial value $\mathbf{Y}(0) = (2, 4)$.

8. What is the long-term behavior of the solution you found?