A = 5(At+B) + 3t

 $y_p(t) = \frac{-3}{5}t - \frac{3}{25}$

A = 5B + (5A + 3) +

	$y_{p}(t) = \frac{-3}{5}t - \frac{3}{25}$ $A = 5B + (5A + 3)t$ $A = 5B$ $A = 5B + (5A + 3) + (5$
Cillous from (C)	$A=5B$ $SA+3=0$ $B=\frac{A}{5}=\frac{-3}{25}$ $A=-\frac{3}{5}$ General solution to $\frac{dy}{dt}=3y+5t$ is $k\cdot y_h(t)+y_p(t)$
tinent	$y(t) = k \cdot e^{St} - \frac{3}{5}t - \frac{3}{25}$ Check: $\sqrt{\frac{dy}{dt}} = Sy + 3t$
	$5ke^{5t} - \frac{3}{5} = 5(ke^{5t} - \frac{3}{5}t - \frac{3}{25}) + 3t$
	CE PROBLEMS $= 3y + e^{-t} \qquad (a) \gamma_{h}(t) = e^{3t}$
	(b) guess: $y_p(t) = Ae^{-t}$ plug in: $-Ae^{-t} = 3Ae^{-t} + e^{-t}$
	$-A = 3A + 1$ $-4A = 1 \qquad \text{so} \qquad A = -\frac{1}{4}$ Several solution: $y(t) = ke^{3t} - \frac{1}{4}e^{-k}$
$2. \frac{dy}{dt} =$	$x - y + \sin(t) \qquad (a) y_h(t) = e^{-t}$
	(b) guess: $\gamma_{p}(t) = A \cos(t) + B \sin(t)$

plug in:	Asin (t) + Beas ($(t) = -(A\cos(t))$	(t) + Bs, \(\dagger\) + Si\(\dagger\)
		and $B=$	
	A:	$=\frac{-1}{2}$ and β	
	(t) (1)) -+ 1. 1.	
·) general Sol	y(t) =	ket - 2 los (t	1 + 2 Sih (+)

First-Order Linear Differential Equations

Math 230

Solve the linear differential equations by completing the following steps:

- (a) Write the associated homogeneous equation and find its general solution $ky_h(t)$.
- (b) Find any particular solution $y_p(t)$ to the nonhomogeneous equation.
- (c) The general solution to the nonhomogeneous equation is $ky_h(t) + y_p(t)$.
- (d) Check your solution by plugging it back in to the nonhomogeneous equation.

1.
$$\frac{dy}{dt} = 3y + e^{-t}$$

The associated homogeneous equation $\frac{dy}{dt} = 3y$ has solution $y_h(t) = e^{3t}$.

For the particular solution, guess $y_p(t) = Ae^{-t}$. Substitute into the differential equation and solve to find $A = -\frac{1}{4}$.

Thus, the general solution is: $y(t) = ke^{3t} - \frac{1}{4}e^{-t}$

$$2. \frac{dy}{dt} = -y + \sin(t)$$

Associated homogeneous equation: $\frac{dy}{dt} = -y$ has solution $y_h(t) = e^{-t}$.

Particular solution: guess $y_p(t) = A \sin t + B \cos t$; substitute into the differential equation and solve to find $A = \frac{1}{2}$ and $B = -\frac{1}{2}$.

Thus, the general solution is: $y(t) = ke^{-t} + \frac{1}{2}\sin t - \frac{1}{2}\cos t$

3.
$$\frac{dy}{dt} = y + e^t$$

Associated homogeneous equation: $\frac{dy}{dt} = y$ has solution $y_h(t) = e^t$.

Particular solution: we would like to guess e^t , but this is already y_h , so we instead choose $y_n(t) = Ate^t$. Substitute into the differential equation and solve to find A = 1.

Thus, the general solution is: $y(t) = ke^t + te^t$

4.
$$\frac{dy}{dt} = y + t + e^{2t}$$

Associated homogeneous equation: $\frac{dy}{dt} = y$ has solution $y_h(t) = e^t$.

Particular solution: guess $y_p(t) = A + Bt + Ce^{2t}$; substitute into the differential equation and solve to find A = -1, B = -1, and C = 1.

Thus, the general solution is: $y(t) = ke^t - 1 - e^t + e^{2t}$