## Linear Algebra – Day 38

Not every topic in this course appears among these review problems. If you find you want practice with a specific topic and want suggestions, I am HAPPY to give them. Please just ask.

- 1. List as many items that could be part of the Unifying Theorem as you can.
- 2. Consider the vector space  $\mathbb{R}^{4\times 4}$  consisting of all  $4\times 4$  matrices real number entries. Let W be the subset consisting of all symmetric matrices that have every diagonal entry equal to 0. Prove that W is a subspace of  $\mathbb{R}^{4\times 4}$  and find a basis for W.
- **3.** Find the matrix A such that the matrix transformation  $T: \mathbb{R}^2 \to \mathbb{R}^2$  given by  $T(\mathbf{x}) = A\mathbf{x}$  has the overall effect of rotating  $\mathbf{x}$  by 90 degrees, then reflecting in the line y = -x, then doubling its length.
- 4. Consider the vectors  $\mathbf{v}_1 = \begin{bmatrix} 1\\2\\1\\1\\2 \end{bmatrix}$ ,  $\mathbf{v}_2 = \begin{bmatrix} 2\\0\\0\\2\\1 \end{bmatrix}$ , and  $\mathbf{v}_3 = \begin{bmatrix} 1\\1\\2\\3\\4 \end{bmatrix}$ . Is the vector  $\mathbf{v} = \begin{bmatrix} 7\\4\\5\\11\\12 \end{bmatrix}$  in span $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ ?
- **5.** Consider the vector space  $\mathbf{P}^3$ . Do the polynomials  $f_1(x) = 4x^3 2x^2 + x$ ,  $f_2(x) = x^2 1$ ,  $f_3(x) = x^2 x$ , and  $f_4(x) = 3$  span  $\mathbf{P}^3$ ? Why or why not?
- **6.** Consider the  $4 \times 5$  matrix

$$A = \begin{bmatrix} 1 & 0 & -1 & 3 & -1 \\ 1 & 0 & 0 & 2 & -1 \\ 2 & 0 & -1 & 5 & -1 \\ 0 & 0 & -1 & 1 & 0 \end{bmatrix}.$$

- (a) What is rank(A)?
- (b) Find bases for col(A), null(A), and row(A).
- 7. Let V be the subset of  $\mathbf{P}^2$  consisting of polynomials  $\mathbf{p}(x)$  with the property  $\mathbf{p}(0) = 0$  and  $\mathbf{p}(1) = 0$ . Determine whether or not V is a subspace of  $\mathbb{P}^2$ . If it is not, explain why. If it is, find a basis for V.
- 8. Suppose that the augmented matrix for a system of linear equations is

$$\begin{bmatrix}
0 & 1 & 4 & \frac{k}{2} \\
1 & 0 & 8 & 1 \\
1 & -1 & k^2 & 0
\end{bmatrix}$$

- (a) For which values of k, if any, does the system have no solutions?
- (b) For which values of k, if any, does the system have infinitely many solutions?
- (c) For which values of k, if any, does the system have a unique solution?
- **9.** For each of the following, the answer is always, sometimes, or never true.
  - (a) If a  $3 \times 4$  matrix has three pivots after row reduction, then its columns form a linearly independent set.
  - (b) The span of three (or more) vectors in  $\mathbb{R}^3$  is all of  $\mathbb{R}^3$ .
  - (c) If the reduced echelon form of A is  $I_n$ , then A is invertible.
  - (d) Let A be an  $m \times n$  matrix and  $\mathbf{b}$  be a vector in  $\mathbb{R}^m$  such that the equation  $A\mathbf{x} = \mathbf{b}$  has a unique solution. If  $\mathbf{c}$  represents a different vector in  $\mathbb{R}^m$ , then the equation  $A\mathbf{x} = \mathbf{c}$  has a unique solution.

**10.** Consider the following vectors in 
$$\mathbb{R}^3$$
:  $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 2 \end{bmatrix}$ ,  $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}$ ,  $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ .

- (a) The vector  $\mathbf{v} = \begin{bmatrix} 3 \\ 2 \\ -2 \end{bmatrix}$  is in span( $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ ). Write  $\mathbf{v}$  as a linear combination of  $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ .
- (b) Do  $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$  span  $\mathbb{R}^3$ ? Explain.
- (c) Is  $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$  a linearly independent set or a linearly dependent set? Explain.
- **11.** Suppose  $T(\mathbf{x}) = A\mathbf{x}$  is a linear transformation with matrix  $A = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 1 & 2 \\ 0 & 1 & 3 \end{bmatrix}$ .
  - (a) What are the domain and codomain of T? (Make sure to specify which is which.)
  - (b) Is T one-to-one? Is T onto? Explain.
- 12. Consider the following matrix and its reduced row echelon form:

$$A = \begin{bmatrix} 1 & 3 & 10 & 28 & 6 \\ 2 & 6 & 1 & -1 & 17 \\ 3 & 9 & -8 & -30 & 28 \\ -1 & -3 & 1 & 5 & 41 \end{bmatrix} \qquad \text{rref}(A) = \begin{bmatrix} 1 & 3 & 0 & -2 & 0 \\ 0 & 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

- (a) Find a basis for each of col(A), row(A), and null(A).
- (b) What is the rank of A?
- **13.** Let  $S = \{1 x + x^2, 2 + x x^2, -1 5x + 5x^2, x\}$  be a set of polynomials in  $\mathbf{P}^2$ .
  - (a) Is S linearly independent or dependent? Explain.
  - (b) Does S span  $\mathbf{P}^2$ ? Explain.
  - (c) Does S form a basis for  $\mathbf{P}^2$ ? Why or why not?
- **14.** Let W be the subset of all matrices A in  $\mathbb{R}^{2\times 2}$  whose determinant is equal to 0. Determine whether or not W is a subspace of  $\mathbb{R}^{2\times 2}$ .
- **15.** Recall that if A is a matrix, then the *transpose* of A, denoted  $A^T$ , is the matrix whose rows are the columns of A and whose columns are the rows of A (in order).

Let V be the subspace of  $\mathbb{R}^{2\times 2}$  consisting of all  $2\times 2$  matrices  $A=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$  with the property

$$A = -A^T$$
.

- (a) Without finding a basis for V or (directly or indirectly) discussing free variables, explain why  $0 < \dim(V) < 4$ .
- (b) Find a basis for V.
- **16.** Find a basis for  $S^{\perp}$  if  $S = \operatorname{span} \left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 4 \\ 2 \\ 2 \\ 0 \end{bmatrix} \right\}$
- 17. Let  $A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ . Find the eigenvalues of A, a basis for each eigenspace, and if possible, diagonalize A.