Linear Algebra – Day 36

1. Cleo: Here are three "vectors" in this crazy new vector space \mathbf{P}^2 :

$$\mathbf{f}(x) = 2x^2 - x + 1$$
 $\mathbf{g}(x) = -5x^2 + x + 2$ $\mathbf{h}(x) = 13x^2 - 5x + 2$

Milo: OK, I really want to find out whether $\mathbf{h}(x)$ is in span($\mathbf{f}(x)$, $\mathbf{g}(x)$).

Cleo: But, we haven't defined what "span" means in this crazy new world.

Milo: Why not just keep the exact same definition of *span* we had before?

Cleo: Seems convenient! I don't want to have to learn a new definition.

Milo: So, I am asking if we can write $\mathbf{h}(x)$ as a "linear combination" of $\mathbf{f}(x)$ and $\mathbf{g}(x)$.

Group chat: How is Milo using the "exact same definition of *span*" from before?

Cleo: Don't we have to define "linear combination" now, too?

Milo: Let's keep the same definition of "linear combination" we had before!

Cleo: I love your idea! We should try to write $\mathbf{h}(x) = a \cdot \mathbf{f}(x) + b \cdot \mathbf{g}(x)$ for some scalars a and b.

Group chat: How is Cleo using the "same definition" of *linear combination* as before?

Milo: I wrote out $\mathbf{h}(x) = a \cdot \mathbf{f}(x) + b \cdot \mathbf{g}(x)$. So, we must get 2a - 5b = 13.

Group chat: Where did Milo get the equation 2a - 5b = 13 from?

Group chat: What other equations relating a and b will have to be true?

There are two more.

Group chat: Can you answer the original question? Do such a and b exist?

- **2.** (a) Give a description of the vectors in $S = \operatorname{span}(x^2, x)$. Can you find a vector in \mathbf{P}^3 that is *not* in S?
 - (b) Try to find a list of polynomials $p_1(x)$, $p_2(x)$, ..., $p_k(x)$ so that span $(p_1(x), p_2(x), \ldots, p_k(x))$ equals all of \mathbf{P}^3 .
 - (c) What is the smallest number of polynomials needed to span \mathbf{P}^3 ?

- **3.** Can you find a list of matrices $A_1, A_2, \ldots A_k$ such that $\mathbb{R}^{2\times 2} = \operatorname{span}(A_1, A_2, \ldots, A_k)$? What is the smallest number of matrices required to span $\mathbb{R}^{2\times 2}$?
- **4.** Review problem: Consider the following (familiar) vectors in \mathbb{R}^3 :

$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} \qquad \mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \\ 4 \end{bmatrix} \qquad \mathbf{v}_3 = \begin{bmatrix} 1 \\ -5 \\ 3 \end{bmatrix}$$

Are \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 linearly independent? Explain how you know.

• Do not just "guess and check." Write out the DEFINITION of linear independence and apply it to these vectors.

5. Consider the following vectors in \mathbf{P}^2 :

$$\mathbf{f}(x) = 1 + 2x^2$$
 $\mathbf{g}(x) = 2 + x + 4x^2$ $\mathbf{h}(x) = 1 - 5x + 3x^2$

Are f(x), g(x), h(x) linearly dependent or linearly independent?

♦ Use the DEFINITION of linear independence. You should end up having to do something similar to what you did previously.

6. Consider the following vectors in $\mathbb{R}^{2\times 2}$:

$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}, \qquad C = \begin{bmatrix} 5 & 3 \\ -1 & 2 \end{bmatrix}$$

(a) Quick, are vectors A and B linearly dependent or linearly independent?

- You should be able to answer this one within 10 seconds. Why?
- (b) Are $A,\,B,\,$ and C linearly dependent or linearly independent? Explain how you know.
- ♦ You should NOT be able to answer this one quite as fast.