Linear Algebra – Day 32

1. Suppose
$$S = \operatorname{span} \left(\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \right)$$
.

- (a) The two vectors you see above form a basis for S. Is this basis an orthogonal basis?
- (b) Write the vector $\mathbf{u} = \begin{bmatrix} 4 \\ 3 \\ 1 \end{bmatrix}$ as the sum of a vector in S and a vector in S^{\perp} .

2. Suppose
$$S = \text{span}\left(\begin{bmatrix} 2\\-1\\3 \end{bmatrix}, \begin{bmatrix} 2\\1\\-1 \end{bmatrix}\right)$$
.

- (a) The two vectors you see above form a basis for S. Is this basis an orthogonal basis?
- (b) Write the vector $\mathbf{u} = \begin{bmatrix} 2 \\ 5 \\ -1 \end{bmatrix}$ as the sum of a vector in S and a vector in S^{\perp} .

3. Milo: Hey Marissa! I collected some data for my big research project. So far, I have three points: $\{(1,1),(3,4),(6,5)\}$.

Marissa: A good start! It's a shame your three points are not on a common line.

Quick task: Plot the points and visually confirm they are not on the same line.

Milo: Wow, that's too bad. I was really hoping that a line would fit my data.

Marissa: You give up too quickly, Milo. Just pretend, for a moment, that the three data points actually do fit on a single line with equation y = mx + b.

Milo: Alright, I'll go along with your idea even though it clearly won't work.

Group chat: If Milo pretends the three points were all on the line y = mx + b, then what three equations need to be satisfied by b and m?

 \bigcirc One of the equations is 6m + b = 5.

Marissa: See? You can now write your three equations as $A\mathbf{x} = \mathbf{y}$.

Group chat: What are A, \mathbf{x} , and \mathbf{y} ?

Group chat: Is $A\mathbf{x} = \mathbf{y}$ a consistent system or an inconsistent system? Use row reduction to confirm this.

Milo: See? We can't do anything! The system has no solutions. We will never find a vector \mathbf{x} where $A\mathbf{x}$ will equal \mathbf{y} .

Marissa: Well, that's true. We can never actually get \mathbf{y} . So, let's just try to find a vector to "plug in" for \mathbf{x} that gets us as close to \mathbf{y} as possible.

Group chat: Discuss Marissa's idea. If we can do what Marissa suggests, what are we really finding?

and wait for further instructions

- **4.** Since there is no **x** for which A**x** = **y**, we seek a vector $\hat{\mathbf{x}}$ so that $A\hat{\mathbf{x}}$ is *closest* to **y**.
 - (a) Compute $\hat{\mathbf{x}} = (A^T A)^{-1} A^T \mathbf{y}$.

🖒 Use Mathematica

- (b) What is the equation of the line that best fits the data points?
- (c) Sketch the line as best as you can on your plot above.