Linear Algebra – Day 30

MATH 220

For Problems 1 and 2, let $\mathbf{u} = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$.

- 1. Compute $\mathbf{u} \cdot \mathbf{v}$ and $\mathbf{v} \cdot \mathbf{u}$. How do your results compare?
- 2. (a) Plot vector \mathbf{u} on a coordinate plane and find its length. Do the same for \mathbf{v} .

The HINT: If a vector had a length of 3 and you wanted to make it have

length 1 but not change

you do to it?

the direction, what would

- (b) Compute the dot product $\mathbf{u} \cdot \mathbf{u}$.
- (c) How are your answers in parts (a) and (b) related?
- (d) Now draw a random vector $\mathbf{x} = \begin{bmatrix} a \\ b \end{bmatrix}$. Can you express the length of \mathbf{x} using the dot product?
- **3.** Find the vector \mathbf{w} with the following properties:
 - \bullet the length of **w** is 1, and
 - \bullet w is in the same direction as v.
- **4. Leo:** I just love these two matrices: $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ and $B = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$

Cleo: Let's multiply A and B together!

Leo: You're way too enthusiastic about this. But OK. Here it is:

$$AB = \begin{bmatrix} a+2d+3g & b+2e+3h & c+2f+3i \\ 4a+5d+6g & 4b+5e+6h & 4c+5f+6i \\ 7a+8d+9g & 7b+8e+9h & 7c+8f+9i \end{bmatrix}$$

Cleo: OH WOW...there are dot products everywhere!

Group chat: Discuss Cleo's observation. In general, how can dot products be used to find the entry in the ith row and jth column of a matrix product AB?

- **5.** Now let $\mathbf{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} -2 \\ 4 \end{bmatrix}$.
 - (a) Plot vectors \mathbf{u} and \mathbf{v} and verify geometrically that they are perpendicular to each other.

- (b) Compute the dot product $\mathbf{u} \cdot \mathbf{v}$.
- (c) Plot a few more vectors that are perpendicular to **u**. Geometrically, what does the collection of *all* vectors that are perpendicular to **u** look like?
- (d) Suppose \mathbf{w} is any vector that is perpendicular to \mathbf{u} . What can you say about the dot product $\mathbf{u} \cdot \mathbf{w}$? Explain your reasoning.
- **6.** Let H be the collection of all vectors \mathbf{x} in \mathbb{R}^3 such that $\begin{bmatrix} 1\\2\\3 \end{bmatrix} \cdot \mathbf{x} = 0$.

(a) Verify that the vector $\begin{bmatrix} -4 \\ 5 \\ -2 \end{bmatrix}$ is in H.

(perpendicular) to $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$

- (b) True or False: $\begin{bmatrix} -4 \\ 5 \\ -2 \end{bmatrix}$ is actually orthogonal to any multiple of $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.
- (c) Geometrically, what does H look like?
- (d) How must x_1, x_2, x_3 be related so that $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ is in H?

- to represent $\begin{bmatrix} 1\\2\\3 \end{bmatrix}$. What
- "shape" is created by all the vectors that are orthogonal to your finger?
- 7. Try repeating the previous problem, but now let H consist of all vectors in \mathbb{R}^3 that are orthogonal

to both
$$\mathbf{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and $\mathbf{v} = \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$.