Linear Algebra – Day 28

1. Milo: I wonder what it means for $\lambda = 0$ to be an eigenvalue of A.

Read this aloud at your table!

Delphine: Milo, what it means for λ to be an eigenvalue is written on the screen!

Milo: Oh, right! So let's read what's on the screen and pretend $\lambda = 0$.

Delphine: Wow, something amazing happened!

Group Chat: What amazing thing happens if $\lambda = 0$ is an eigenvalue of A?

- **2.** Consider the upper-triangular matrices $M = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 4 \end{bmatrix}$ and $N = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$.
 - (a) What are the roots, with multiplicities, of $\det(M \lambda I)$? How about for $\det(N \lambda I)$?

- (b) For matrix M, what are $\dim(E_3)$ and $\dim(E_4)$?
- (c) For matrix N, what are $\dim(E_3)$ and $\dim(E_4)$?
- and wait for further instructions

(d) For
$$M$$
: $alg(3) = \underline{\hspace{1cm}} geo(3) = \underline{\hspace{1cm}} alg(4) = \underline{\hspace{1cm}} geo(4) = \underline{\hspace{1cm}}$

- (e) For N: $alg(3) = \underline{\hspace{1cm}} geo(3) = \underline{\hspace{1cm}} alg(4) = \underline{\hspace{1cm}} geo(4) = \underline{\hspace{1cm}}$
- **3.** Maura: Wow! This means that if λ only occurs once as a root of the characteristic polynomial of A, we already know that λ will produce only one dimension worth of eigenvectors. We would not even have to calculate the eigenvectors!

Group Chat: What is Maura talking about?

4. (a) Write down any 2×2 diagonal matrix A and any 3×3 diagonal matrix B.

↑ To make it interesting, use different diagonal entries, none equal to 0 or 1.

- (b) Find A^2 and B^2 .
- (c) Find A^3 and B^3 .
- (d) Do you have a guess as to what A^k and B^k equal?

(e) If
$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & d_n \end{bmatrix}$$
, then what is D^k ?

- (f) **Theorem:** If D is the previous diagonal matrix, then the eigenvalues of D^k are
- **5.** Suppose A is an $n \times n$ matrix and $A = PBP^{-1}$ for some $n \times n$ matrices P and B.
 - (a) Find A^2 and A^3 in terms of P and B.
 - (b) What do you think A^k equals (in terms of P and B)?
- **6. Ava:** Don't ask me why, but I really want to know A^{63} for $A = \begin{bmatrix} 1 & 3 & -3 & -3 \\ 3 & -3 & 3 & -1 \\ -3 & 3 & 1 & -3 \\ -3 & -1 & -3 & -3 \end{bmatrix}$.

Jonah: Huh? Why 63? OK, well you can easily find A^{63} using this information:

$$\begin{bmatrix} 1 & 3 & -3 & -3 \\ 3 & -3 & 3 & -1 \\ -3 & 3 & 1 & -3 \\ -3 & -1 & -3 & -3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & -1 \\ 1 & 0 & 1 & -1 \\ 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} -8 & 0 & 0 & 0 \\ 0 & -4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & -1 \\ -1 & 1 & 0 & -1 \\ 1 & 0 & 1 & -1 \\ 1 & 1 & 0 & 1 \end{bmatrix}^{-1}$$

Group chat: Why does Jonah think Ava can calculate A^{63} easily?