

- 1. (a) Find the characteristic polynomial of $A = \begin{bmatrix} 1 & -1 \\ 1 & 3 \end{bmatrix}$.
 - (b) What are the eigenvalues of A?
 - (c) For one of the λ you found in part (a), find E_{λ} . (Write it as a span.)
- $\textbf{2. Consider the matrix} \quad C = \begin{bmatrix} 5 & 17 & \pi & 312 \\ 0 & -2 & -74 & 91 \\ 0 & 0 & 3 & 803 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$
 - (a) QUICK! Find the characteristic polynomial of C.

 \bigcirc Don't panic. Just write $C-\lambda I$ and go from there.

- (b) When Jason looked at matrix C, he immediately said "Boom! The eigenvalues of this matrix are 5, −2, and 3." How did Jason know this so quickly?
- (c) **Theorem:** If A is a triangular matrix (either upper or lower), then you can find the eigenvalues of A by ______.
- **3.** (a) Suppose you know that A is an invertible $n \times n$ matrix and $A\mathbf{x} = 3\mathbf{x}$. What is $A^{-1}\mathbf{x}$?

HINT: If A^{-1} undoes A and A triples \mathbf{x} , what should A^{-1} do to \mathbf{x} ?

- (b) Suppose A is a 3×3 matrix whose eigenvalues are 1, 2, 3. What are the eigenvalues of A^{-1} ?
- (c) Conjecture: If A is an $n \times n$ invertible matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$, then the eigenvalues of A^{-1} are
- (d) **Conjecture**: A is invertible if and only if ______.

Say something about its eigenvalues.

- **4.** (a) Find the characteristic polynomial and eigenvalues of $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$.
 - (b) What are the eigenvectors (in \mathbb{R}^2) for A?
 - (c) Recall that A is the matrix that rotates vectors in \mathbb{R}^2 counterclockwise by 90 degrees ($\pi/2$ radians). Given that, why do the answers to (a) and (b) make sense?
 - (d) Use the fact that $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ is reflection in the line y = x to find the eigenvalues of A without calculation.

Use geometry! What vectors remain multiples of themselves? What multiple?

- **5.** (a) What is the characteristic polynomial of $M = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$? What are the eigenvalues?
 - (b) What are the dimensions of the eigenspaces of M?
 - (c) What is the characteristic polynomial of $N = \begin{bmatrix} 3 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 4 \end{bmatrix}$? What are the eigenvalues?
 - (d) What are the dimensions of the eigenspaces of N?
 - (e) How are M and N the same? How are they different? How are their eigenvalues the same? How are their eignespaces different?