$\underset{\text{MATH 220}}{\textbf{Linear}} ~ \textbf{Algebra} - \textbf{Day 21}$

- 1. Find examples of 3×3 matrices A, B, C, and D such that:
 - (a) nullity(A) = 3
 - (b) nullity(B) = 2
 - (c) $\operatorname{nullity}(C) = 1$
 - (d) $\operatorname{nullity}(D) = 0$

- **2.** If possible, find examples of 3×4 matrices A, B, C, D, and E such that:
 - (a) nullity(A) = 4
 - (b) nullity(B) = 3
 - (c) $\operatorname{nullity}(C) = 2$
 - (d) $\operatorname{nullity}(D) = 1$
 - (e) $\operatorname{nullity}(E) = 0$

3. Let A be an $n \times n$ matrix with column vectors $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$, and let $T : \mathbb{R}^n \to \mathbb{R}^n$ the linear transformation given by $T(\mathbf{x}) = A\mathbf{x}$.

List as statements as you can that are equivalent to the following. The columns of A span \mathbb{R}^n .

Remember that "equivalent" means all true or all false.

- **4.** Suppose all you know about A is that it is a $m \times n$ matrix, and let T be the linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$.
 - (a) What are the possible values for the dimension of the kernel of T?
 - (b) What are the possible values for the dimension of the range of T?
 - (c) If you find out that the columns of A are linearly independent, how does that change your previous answers?
 - (d) If the columns of A are linearly independent, what else can you conclude about A and T?