

- 1. (a) The graph of $2x_1 x_2 = 0$ is a line in \mathbb{R}^2 . Sketch this line. Then find a basis for it.
 - (b) The graph of $2x_1 x_2 x_3 = 0$ is a _____ in \mathbb{R}^3 . Try to sketch it. Then find a basis for it.
 - (c) The graph of $2x_1 x_2 x_3 + x_4 = 0$ is a _____ in \mathbb{R}^4 . Find a basis for it. ☆ 3 vectors?
- **2.** Let $A = \begin{bmatrix} 1 & 4 & 5 & 1 \\ 2 & 5 & 7 & 1 \\ 3 & 6 & 11 & 1 \end{bmatrix}$.
 - (a) Find null(A) by finding all solutions to $A\mathbf{x} = 0$.
 - (b) Find a basis for null(A) by finding a linearly independent set of vectors that spans null(A). [♠] 1 vector?
 - (c) The **nullity** of A is the dimension of null(A). What is the nullity of A?
 - (d) Find a basis for the range of A.
- **3.** Find examples of 3×3 matrices A, B, C, and D such that:
 - (a) nullity(A) = 3
 - (b) $\operatorname{nullity}(B) = 2$
 - (c) $\operatorname{nullity}(C) = 1$
 - (d) $\operatorname{nullity}(D) = 0$

- **4.** Consider the sets of vectors $S = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\-4\\5 \end{bmatrix} \right\}$ and $S' = \left\{ \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\-4\\5 \end{bmatrix}, \begin{bmatrix} 2\\8\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1\\-3 \end{bmatrix} \right\}$.
 - (a) How can you tell without doing any work that S is not a basis for \mathbb{R}^3 ?
 - (b) Is S linearly independent or dependent?
 - (c) Construct a basis for \mathbb{R}^3 that includes the two vectors in S. How do you know you have a basis?
 - (d) How can you tell without doing any work that S' is not a basis for \mathbb{R}^3 ?
 - (e) Does S' span all of \mathbb{R}^3 ?
 - (f) Construct a basis for \mathbb{R}^3 that includes some of the vectors in S'. How do you know you have a basis?
- **5.** If possible, find examples of 3×4 matrices A, B, C, D, and E such that:
 - (a) nullity(A) = 4
 - (b) $\operatorname{nullity}(B) = 3$
 - (c) nullity(C) = 2
 - (d) $\operatorname{nullity}(D) = 1$
 - (e) nullity(E) = 0
- **6.** Suppose all you know about A is that it is a $m \times n$ matrix, and let T be the linear transformation defined by $T(\mathbf{x}) = A\mathbf{x}$.
 - (a) What are the possible values for the dimension of the kernel of T?
 - (b) What are the possible values for the dimension of the range of T?
 - (c) If you find out that the columns of A are linearly independent, how does that change your previous answers?