

1. With your group, write down three random vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ (all in \mathbb{R}^n).	• Make it interesting, but simple.
(a) How are span $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ and span $(\mathbf{v}_3, \mathbf{v}_2, \mathbf{v}_1)$ related?	
(b) How are span $(\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3)$ and span $(\mathbf{v}_1, 7\mathbf{v}_2, \mathbf{v}_3)$ related?	
(c) How are span($\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$) and span($\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 + 7\mathbf{v}_2$) related?	
2. Let $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ be the <i>rows</i> of a matrix A .	↑ THE ROWS. They
(a) What happens to the span of the rows after the row operation $R_i \leftrightarrow R_j$?	are vectors, too. $\ ^\circ$ We did #1 for a reason.
(b) What happens to the span of the rows after the row operation $cR_i \to R_i \ (c \neq 0)$?	\Im We did $\#1$ for a reason.
(c) What happens to the span of the rows after the row operation $cR_i + R_j \rightarrow R_j$?	ூ We did #1 for a reason.
(d) Circle the one correct word: Row operations sometimes always never change the span of the rows of a matrix.	
3. For each statement, pick the correct symbol and discuss: $<$ \leq $=$ \geq $>$	
(a) If you have m vectors that span \mathbb{R}^3 , then $m_{\underline{\hspace{1cm}}}3$.	
(b) If you have m linearly independent vectors in \mathbb{R}^3 , then $m \underline{\hspace{1cm}} 3$.	
(c) If you have m vectors that span \mathbb{R}^n , then $m \underline{\hspace{1cm}} n$.	
(d) If you have m linearly independent vectors in \mathbb{R}^n , then $m \underline{\hspace{1cm}} n$.	
(e) If you have m linearly independent that span \mathbb{R}^n , then $m \underline{\hspace{1cm}} n$.	
4. How many vectors will there be in a basis for \mathbb{R}^n ?	

5. For this problem:

$$M = \begin{bmatrix} 1 & 2 & 4 & 7 \\ 2 & -1 & 3 & 5 \\ 4 & -7 & 1 & 1 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & 2 & 3.4 \\ 0 & 1 & 1 & 1.8 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad \text{and} \quad N = \begin{bmatrix} 1 & 2 & 4 \\ 2 & -1 & -7 \\ 4 & 3 & 1 \\ 7 & 5 & 1 \end{bmatrix} \xrightarrow{\text{rref}} \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

(a) Let
$$S = \operatorname{span}\left(\begin{bmatrix}1\\2\\4\end{bmatrix}, \begin{bmatrix}2\\-1\\-7\end{bmatrix}, \begin{bmatrix}4\\3\\1\end{bmatrix}, \begin{bmatrix}7\\5\\1\end{bmatrix}\right)$$
 and $W = \operatorname{span}\left(\begin{bmatrix}1\\2\\4\\7\end{bmatrix}, \begin{bmatrix}2\\-1\\3\\5\end{bmatrix}, \begin{bmatrix}4\\-7\\1\\1\end{bmatrix}\right)$.

- \bullet Using the "Row Method," a basis for W is:
- Using the "Column Method," a basis for W is:
- Using the "Row Method," a basis for S is:
- Using the "Column Method," a basis for S is:
- (b) Cleo: WOW! EVERYONE! Look at $\operatorname{rref}(N) = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. I can immediately see the number of vectors a basis of W will have! Group chat: What is Cleo looking at?
- (c) **Jonah:** AND, I can immediately see the number of vectors a basis of S will have! **Group chat:** What is Jonah looking at?
- (d) Nadia: (looking quite excited): I can ALSO immediately see the number of vectors a basis of $\operatorname{null}(N)$ will have.

Group chat: What is Nadia looking at?