Linear Algebra – Day 18

MATH 220

1. Let
$$A = \begin{bmatrix} 1 & -1 & 1 & 4 & 4 \\ 0 & 0 & 1 & 3 & -1 \\ 0 & 0 & -2 & -6 & 2 \end{bmatrix}$$
 and $\operatorname{rref}(A) = \begin{bmatrix} 1 & -1 & 0 & 1 & 5 \\ 0 & 0 & 1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$.

(a) If \mathbf{x} is a **solution** to $A\mathbf{x} = \mathbf{0}$, then \mathbf{x} is a vector in (choose one and explain):

$$\mathbb{R}^2$$
 \mathbb{R}^3 \mathbb{R}^4 \mathbb{R}^5

- (b) What are the free variables in the system $A\mathbf{x} = \mathbf{0}$?
- (c) Write the solution set of $A\mathbf{x} = \mathbf{0}$ in *vector* form (in the space provided).

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \\ \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \end{bmatrix} + \begin{bmatrix} \\ \\ \\ \end{bmatrix} + \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$

• Remember, the "non-free" variables get solved for.

(d) Write the solution set to $A\mathbf{x} = \mathbf{0}$ as a span of specific numerical vectors.

The solution set of
$$A\mathbf{x} = \mathbf{0}$$
 is span $\left(\begin{bmatrix} \\ \\ \end{bmatrix}, \begin{bmatrix} \\ \\ \end{bmatrix}, \begin{bmatrix} \\ \\ \end{bmatrix} \right)$.

(e) **Erez:** What we just did was not a coincidence! No matter what the matrix A is, we will always be able write the solutions to $A\mathbf{x} = \mathbf{0}$ as a span of some specific vectors!

Group chat: Discuss if/why Erez is right.

🖒 Erez is right.

Ava: As soon as I saw rref(A) at the start, I knew the solution set to $A\mathbf{x} = \mathbf{0}$ would be the span of 3 vectors.

Group chat: How can you tell ahead of time the *number* of vectors we would end up being included in the span that Ava is talking about?

Maura: AND, the vectors listed in the span are definitely linearly independent!

Group chat: Without doing arithmetic, how can you tell that the 3 vectors used in the span in part (c) are linearly independent?

- (f) In this problem, you have found the *null space* of
- (g) In this problem, you have found the kernel of what?

- **2.** Let J be the collection of all vectors in \mathbb{R}^2 of the form $\begin{bmatrix} x \\ x^2 \end{bmatrix}$.
 - (a) Find two vectors in \mathbb{R}^2 that are in J and two vectors in \mathbb{R}^2 that are NOT in J.
 - (b) **Erez:** Didn't we just learn that any collection we can write as a span is automatically a subspace?

Ava: Oh yeah...we should do that here! Every vector in J looks like

$$\begin{bmatrix} x \\ x^2 \end{bmatrix} = x \begin{bmatrix} 1 \\ x \end{bmatrix}.$$

Erez: Right, so $J = \operatorname{span} \left(\begin{bmatrix} 1 \\ x \end{bmatrix} \right)$. By the theorem, J is a subspace of \mathbb{R}^2 .

Group check Erez and Ava's work: Did they correctly conclude that J is a subspace of \mathbb{R}^2 ?

- **3.** Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by $T(\mathbf{x}) = \begin{bmatrix} 1 & 3 \\ 2 & 6 \end{bmatrix} \mathbf{x}$.
 - (a) What is the range of T?
 - (b) What is the kernel of T?
 - (c) Your answer to (b) tells you many things about T and A. List as many as you can!
- 4. Define the following subspaces:

$$S_{1} = \operatorname{span}\left(\begin{bmatrix}2\\1\\0\end{bmatrix}\right) \qquad S_{2} = \operatorname{span}\left(\begin{bmatrix}2\\1\\0\end{bmatrix}, \begin{bmatrix}0\\3\\0\end{bmatrix}\right) \qquad S_{3} = \operatorname{span}\left(\begin{bmatrix}2\\1\\0\end{bmatrix}, \begin{bmatrix}0\\3\\0\end{bmatrix}, \begin{bmatrix}2\\4\\0\end{bmatrix}\right)$$

$$S_{4} = \operatorname{span}\left(\begin{bmatrix}2\\1\\0\end{bmatrix}, \begin{bmatrix}0\\3\\0\end{bmatrix}, \begin{bmatrix}0\\4\\0\end{bmatrix}, \begin{bmatrix}0\\0\\5\end{bmatrix}\right) \qquad S_{5} = \operatorname{span}\left(\begin{bmatrix}2\\1\\0\end{bmatrix}, \begin{bmatrix}0\\3\\0\end{bmatrix}, \begin{bmatrix}2\\4\\0\end{bmatrix}, \begin{bmatrix}0\\0\\5\end{bmatrix}, \begin{bmatrix}2\\4\\5\end{bmatrix}\right)$$

- (a) All five of these collections are subspaces of \mathbb{R}^3 . Why?
- (b) What do S_1 and S_2 have in common? Is there anything different between them?
- (c) What do S_2 and S_3 have in common? Is there anything different between them?
- (d) What do S_3 and S_4 have in common? Is there anything different between them?
- (e) What do S_4 and S_5 have in common? Is there anything different between them?