Linear Algebra – Day 13 MATH 220

1. The 4 matrices below are associated with the linear transformations, T_A , T_B , T_C , and T_D .

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 10 \end{bmatrix}, \quad C = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}, \quad D = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12 \end{bmatrix}$$

(a) Determine which of the linear transformations is *onto* by determining if every vector in the codomain of the transformation is in the span of the columns of the corresponding matrix.

☆ RREF! Use Mathematica!

- (b) Determine which of the linear transformations is one-to-one by determining how many preimages of $\bf 0$ there are.
- **2.** Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ with m < n, so the corresponding matrix has fewer rows than columns. Is the transformation *always*, *sometimes*, or *never* one-to-one? Explain.

 ${f \circlearrowleft}$ Look at T_C

3. Suppose $T: \mathbb{R}^n \to \mathbb{R}^m$ with m > n, so the corresponding matrix has more rows than columns. Is the transformation *always*, *sometimes*, or *never* onto? Explain.

 \Im Look at T_D

- **4.** Consider the transformation T_A above.
 - (a) Describe the set of pre-images of $\mathbf{0}$ in vector form. (Remember that this is the set of solutions to $A\mathbf{x} = \mathbf{0}$.)
 - (b) Describe the set of pre-images of $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$ in vector form (i.e., the set of solutions to $A\mathbf{x} = \begin{bmatrix} 1\\1\\1 \end{bmatrix}$).
 - (c) What is the geometric relationship between the two solution sets above?

5. Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 1 & -1 \\ 2 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ -2 & 0 \\ -1 & 3 \end{bmatrix}$, and $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$.

- (a) Which of the sums A + B, A + C, and B + C can you compute?
- (b) Compute A + B, 2A, and $C + D^T$.
- (c) Which of the products AB, AC, AD, CA, CB and CD can you compute?
- (d) Compute AB by hand, and BA using Mathematica use B.A rather than B*A. In fact, what does B*A give you?

6. Suppose
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 0 & 3 \end{bmatrix}$$
 and $B = \begin{bmatrix} -1 & 0 & 2 & -1 \\ 0 & 1 & 0 & 1 \\ 1 & 2 & -2 & 3 \end{bmatrix}$.

Let T_A and T_B be the linear transformation given by multiplication by A and B respectively.

(a) Does $T_B \circ T_A$ even make sense?

If yes, the domain of $T_B \circ T_A$ is _____ and the codomain is _____ .

 $\mathfrak O$ That is, is it possible to perform T_A first, immediately followed by T_B ?

(b) Does $T_A \circ T_B$ even make sense?

If yes, the domain of $T_A \circ T_B$ is _____ and the codomain is _____ .

- \mathfrak{T} That is, is it possible to perform T_B first, immediately followed by
- (c) You should have concluded that $T_A \circ T_B$ is the one that makes sense. Find the matrix that performs the transformation $T_A \circ T_B$.

Hint: what happens to the "e" vectors?

(d) Compute AB. What do you notice?