Linear Algebra – Day 11

1. Re-enact the following dialogue with your group.

Milo: Hey, Maura! I have this function $T: \mathbb{R}^3 \to \mathbb{R}^2$ that has the formula

$$T\left(\begin{bmatrix} x_1\\x_2\\x_3\end{bmatrix}\right) = \begin{bmatrix} 2x_1+2\\x_2+x_3\end{bmatrix}.$$

Maura: That function is *not* a linear transformation!

Maura: We can find an example of vectors \mathbf{u} and \mathbf{v} where $T(\mathbf{u} + \mathbf{v})$ does not equal $T(\mathbf{u}) + T(\mathbf{v})$.

Group discussion: Try to find two specific vectors
$$\mathbf{u}$$
 and \mathbf{v} such that $T(\mathbf{u} + \mathbf{v}) \neq T(\mathbf{u}) + T(\mathbf{v})$.

Milo: This function actually fails *both* requirements of a linear transformation! I can find an example of a vector \mathbf{u} and a scalar c where $T(c \cdot \mathbf{u})$ does not equal $c \cdot T(\mathbf{u})$.

Group discussion: Try to find a specific vector \mathbf{u} and scalar c such that $T(c \cdot \mathbf{u}) \neq c \cdot T(\mathbf{u})$.

2. Now consider at the function $T: \mathbb{R}^3 \to \mathbb{R}^2$ given by the formula $T\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 \\ x_2 + x_3 \end{bmatrix}$.

(a) Use the formula above to calculate
$$T\left(\begin{bmatrix} a_1+b_1\\a_2+b_2\\a_3+b_3 \end{bmatrix}\right)$$
.

(b) Use the formula above to individually calculate
$$T\left(\begin{bmatrix} a_1\\a_2\\a_3\end{bmatrix}\right)+T\left(\begin{bmatrix} b_1\\b_2\\b_3\end{bmatrix}\right).$$

(c) Are the results of parts (a) and (b) equal?

(d) Use the formula above to calculate
$$T\begin{pmatrix} c \cdot a_1 \\ c \cdot a_2 \\ c \cdot a_3 \end{pmatrix}$$
.

(e) Use the formula above to calculate
$$c \cdot T \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
.

(f) Are the results of parts (d) and (e) equal?

3. Here is the formula for a linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$

 \Im I already checked to make sure T follows the two requirements!

$$T\left(\begin{bmatrix}x\\y\end{bmatrix}\right) = \begin{bmatrix}x+2y\\3x+7y\\-y\end{bmatrix}.$$

- (a) Using the formula for T above, calculate $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right)$, $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right)$, and $T\left(\begin{bmatrix}2\\3\end{bmatrix}\right)$.
- (b) **Ava:** I figured out that $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\3\\0\end{bmatrix}$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}2\\7\\-1\end{bmatrix}$.

REMEMBER: linear transformations don't mess with linear combinations.

Jason: Well done, Ava! That is correct.

Ava: But I don't need the formula to figure out $T \begin{bmatrix} 2 \\ 3 \end{bmatrix}$.

Jason: What do you mean? Are you a magician?

Ava: No, silly! I just used the work I already did and got

$$T\left(\begin{bmatrix}2\\3\end{bmatrix}\right) = 2 \cdot \begin{bmatrix}1\\3\\0\end{bmatrix} + 3 \cdot \begin{bmatrix}2\\7\\-1\end{bmatrix}.$$

Group chat: what did Ava do to figure out $T \begin{bmatrix} 2 \\ 3 \end{bmatrix}$?

- (c) Try to come up with a 3×2 matrix A for which $T(\mathbf{x}) = A\mathbf{x}$.
- **4.** Let $A = \begin{bmatrix} 2 & 0 & -2 \\ -1 & 3 & 4 \end{bmatrix}$ and let $T : \mathbb{R}^3 \to \mathbb{R}^2$ be given by $T(\mathbf{x}) = A\mathbf{x}$. Is the vector $\begin{bmatrix} 4 \\ 6 \end{bmatrix}$ in the range of T?
- **5.** Suppose $T: \mathbb{R}^4 \to \mathbb{R}^3$ is the linear transformation $T(\mathbf{x}) = A\mathbf{x}$ where

$$A = \begin{bmatrix} 1 & -1 & 1 & -4 \\ 1 & 0 & 3 & -2 \\ 2 & 2 & 10 & 0 \end{bmatrix}$$

- (a) Rephrase the following question in as many ways as you possibly can: Is every vector \mathbf{b} in \mathbb{R}^3 in the range of T?
- (b) What is the answer? Is every vector **b** in \mathbb{R}^3 in the range of T?