

- 1. Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{u}_4\}$ be a set of four mystery vectors in \mathbb{R}^3 . In each case below, (i) decide whether the set is linearly independent or dependent, and (ii) decide whether the set spans all of \mathbb{R}^3 .
 - (a) The matrix $\begin{bmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \ \mathbf{u}_4 \end{bmatrix}$ has RREF $\begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & 4 \end{bmatrix}$.
 - (b) The matrix $\begin{bmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \ \mathbf{u}_4 \end{bmatrix}$ has RREF $\begin{bmatrix} 1 & 0 & 2 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$.
 - $\text{(c) The matrix } \begin{bmatrix} \mathbf{u}_1 \ \mathbf{u}_2 \ \mathbf{u}_3 \ \mathbf{u}_4 \end{bmatrix} \text{ has RREF } \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 4 & 5 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$
- 2. In parts (a) (c), circle the correct option for each statement.
 - (a) $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_{10}$ are ten vectors in \mathbb{R}^9 .

must / cannot / might or might not span \mathbb{R}^9 . The vectors

The vectors must / cannot / might or might not be linearly independent.

If these vectors span \mathbb{R}^9 , then they must / cannot / might or might not be linearly independent.

(b) $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_8$ are eight vectors in \mathbb{R}^9 .

span \mathbb{R}^9 . must / cannot / might or might not The vectors

The vectors must / cannot / might or might not be linearly independent.

If these vectors are linearly independent, then they must / cannot / might or might not span \mathbb{R}^9 .

(c) $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_9$ are nine vectors in \mathbb{R}^9 .

must / cannot / might or might not span \mathbb{R}^9 . The vectors

must / cannot / might or might not be linearly independent.

If these vectors span \mathbb{R}^9 , then they must / cannot / might or might not be linearly independent.

3. Suppose A is a 4×4 matrix whose columns are linearly independent. Explain why the linear system whose augmented matrix is $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has exactly one solution for all vectors $\mathbf{b} \in \mathbb{R}^4$.

4. Suppose A is a 4×4 matrix whose columns are linearly dependent. Explain why the linear system whose augmented matrix is $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ has no solution for some vector $\mathbf{b} \in \mathbb{R}^4$.

5. In each case, determine whether \mathbf{b} is in the span of the other vectors. If so, express \mathbf{b} as a linear combination of the other vectors.

🖒 use Mathematica!

(a)
$$\mathbf{a}_1 = \begin{bmatrix} 4 \\ -3 \\ 4 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 3 \\ -6 \\ 2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 7 \\ 1 \\ -2 \end{bmatrix}$

(b)
$$\mathbf{a}_1 = \begin{bmatrix} 2 \\ -2 \\ 5 \end{bmatrix}$$
, $\mathbf{a}_2 = \begin{bmatrix} 5 \\ 7 \\ -1 \end{bmatrix}$, $\mathbf{a}_3 = \begin{bmatrix} 4 \\ 6 \\ 2 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} -2 \\ -4 \\ 1 \end{bmatrix}$

6. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly independent vectors in \mathbb{R}^n . Let matrix A have these vectors as its columns. What is the RREF of A?

7. Suppose $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ are linearly dependent vectors in \mathbb{R}^n . Let matrix A have these vectors as its columns. What can you say about the RREF of A?