

- 1. Warm-up Group Chat:
 - (a) Is span $\left(\begin{bmatrix}1\\0\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\\0\end{bmatrix},\begin{bmatrix}0\\0\\1\\1\end{bmatrix},\begin{bmatrix}0\\3\\4\\4\end{bmatrix}\right)$ the same as span $\left(\begin{bmatrix}1\\0\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\0\\0\end{bmatrix},\begin{bmatrix}0\\1\\1\end{bmatrix}\right)$? Why or why not?
 - (b) Is span $\begin{pmatrix} 2 \\ 0 \\ 1 \end{pmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$ the same as span $\begin{pmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ -1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 4 \\ -2 \\ 1 \end{bmatrix}$? Why or why not?
- **2.** Consider the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , and \mathbf{v}_4 in \mathbb{R}^n .
 - (a) Suppose

$$\mathbf{v}_4 = 2\mathbf{v}_1 + 3\mathbf{v}_2 - 5\mathbf{v}_3$$

Why does this mean \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 are linearly dependent? Have a discussion with your group as to why.

(b) Suppose $\mathbf{v}_1, \, \mathbf{v}_2, \, \mathbf{v}_3, \, \mathbf{v}_4$ are linearly dependent because

So Found a way to express 0 in a nontrivial way.

$$3\mathbf{v}_1 - 5\mathbf{v}_2 + 0\mathbf{v}_3 + 7\mathbf{v}_4 = \mathbf{0}$$

- Given only this information, explain how it is possible to express \mathbf{v}_4 as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.
- Given only this information, is it possible to express \mathbf{v}_3 as a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_4$?
- **3.** Have a discussion with your table about the following questions:
 - (a) Are the vectors $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ linearly independent or linearly dependent?

1 If they are linearly dependent, find a dependence relation.

(b) Can you *generalize* what just happened?

4. Let
$$\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
, $\mathbf{v}_2 = \begin{bmatrix} 2 \\ -4 \\ -2 \end{bmatrix}$, and $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

(a) Are the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ linearly independent or linearly dependent?

If they are linearly dependent, find a dependence relation.

(b) Do the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ span \mathbb{R}^3 ?

♦ You shouldn't have to compute anything new to answer this.

- (c) Let A be the matrix whose columns are $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$. Does $A\mathbf{x} = \mathbf{b}$ have a unique solution for all \mathbf{b} in \mathbb{R}^3 ?
- **5.** For the following questions you always end up solving a system that has augmented matrix that looks something like $\begin{bmatrix} A & \mathbf{b} \end{bmatrix}$ where you know A has n rows and m columns.
 - (a) What relationship between m and n guarantees the m columns of A don't span \mathbb{R}^n ?

$$m < n$$
 $m = n$ $m > n$

(b) What relationship between m and n guarantees the m columns of A are **not** linearly independent?

$$m < n$$
 $m = n$ $m > r$

- (c) Summary:
 - The m columns of A could only span \mathbb{R}^n if _____.
 - The *m* columns of *A* could only be linearly independent if _____.
 - The m columns of A could only span \mathbb{R}^n AND be linearly independent if
- **6.** Can you come up with an example of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ (in \mathbb{R}^2) which are linearly *dependent*, but yet \mathbf{v}_1 is **not** a linear combination of \mathbf{v}_2 and \mathbf{v}_3 ?