Linear Algebra – Day 7

1. (a) **Erez:** I just noticed that the RREF of $\begin{bmatrix} 1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9 \end{bmatrix}$ is $\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \end{bmatrix}$.

Cleo: That means that $x_1 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + x_2 \begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix} + x_3 \begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ has a nontrivial solution!

Group chat: Is Cleo correct? How many solutions does this equation have?

- (b) **Maura:** That means you can write $\begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$ as a linear combination of $\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and $\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$! **Group chat:** Is Maura correct? How do you know?
- (c) **Milo:** That means that $\begin{bmatrix} 7 \\ 8 \\ 9 \end{bmatrix}$ is in span $\begin{pmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}$! **Group chat:** Is Milo correct? How do you know?
- **2.** Let $\mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$, and $\mathbf{u}_4 = \begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix}$
 - (a) Does $x_1\mathbf{u}_1 + x_2\mathbf{u}_2 + x_3\mathbf{u}_3 = \mathbf{0}$ have a non-trivial solution? If so, how many?
 - (b) Is the set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ linearly independent or dependent?
 - (c) Is $\mathbf{u}_1 \in \operatorname{span}(\mathbf{u}_2, \mathbf{u}_3)$?
 - (d) Show that $\mathbf{u}_4 \in \mathrm{span}(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ and that there is only one way to write \mathbf{u}_4 as a linear combination of the others.

3. Let
$$\mathbf{u}_1 = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\mathbf{u}_2 = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$, $\mathbf{u}_3 = \begin{bmatrix} 2 \\ 1 \\ 3 \end{bmatrix}$, and $\mathbf{u}_4 = \begin{bmatrix} 5 \\ 4 \\ 9 \end{bmatrix}$

- (a) Does $x_1\mathbf{u}_1 + x_2\mathbf{u}_2 + x_3\mathbf{u}_3 = \mathbf{0}$ have a non-trivial solution? If so, how many?
- (b) Is the set $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ linearly independent or dependent?
- (c) Show that $\mathbf{u}_4 \in \operatorname{span}(\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3)$ and that there are infinitely many ways to write \mathbf{u}_4 as a linear combination of the others.
- (d) Find two different ways to write \mathbf{u}_4 as a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$.

- **4.** Let $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ be a set of three mystery vectors in \mathbb{R}^3 . In each case below, (i) decide whether the set is linearly independent or dependent, and (ii) decide whether the set spans all of \mathbb{R}^3 .
 - (a) The matrix $\begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{bmatrix}$ has RREF $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
 - (b) The matrix $\begin{bmatrix} {\bf u}_1 & {\bf u}_2 & {\bf u}_3 \end{bmatrix}$ has RREF $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}$.