

1. Let A = (2,0) and B = (6,3). Draw the vector from A to B (which we will call u).

- (a) Suppose C = (-1, -2) and the vector from C to D (which we will call w) has the same length and direction as the vector \mathbf{u} . Find the coordinates of point D.
- (b) Sketch vector \mathbf{w} on the grid above. Geometrically, how are the vector \mathbf{u} and the vector \mathbf{w} related?
- (c) Let O=(0,0) denote the origin. Find point E such that the vector from O to E equals the vector \mathbf{u} .
- 🖒 Unless we have a reason not to, we almost always draw vectors emanating from the origin.

- **2.** Consider the vectors $\mathbf{u} = \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ and $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$.
 - (a) What do you think $\mathbf{u} + \mathbf{v}$ should equal?
 - (b) What do you think 2v should equal?
 - (c) Sketch \mathbf{u} , \mathbf{v} , and (your guesses for) $\mathbf{u} + \mathbf{v}$ and $2\mathbf{v}$ on the grid below (all emanating from the origin). In the sketch, how are these vectors related to each other?
 - (d) Use your sketch to explain why $\mathbf{u} + \mathbf{v} = \mathbf{v} + \mathbf{u}$.

This is "obvious" algebraically. Why?

3. Is it possible to find numbers
$$x_1, x_2, x_3$$
 so that $x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + x_2 \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ 2 \end{bmatrix}$?

All three positions on each side of the equation must be equal.

4. (a) Can you find numbers
$$x_1$$
 and x_2 such that $x_1 \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} + x_2 \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}$?

(b) Can you find numbers
$$x_1$$
 and x_2 such that $x_1\begin{bmatrix}1\\2\\3\end{bmatrix} + x_2\begin{bmatrix}1\\5\\3\end{bmatrix} = \begin{bmatrix}1\\-1\\3\end{bmatrix}$?

- **5.** Suppose we have the vector $\mathbf{d} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
 - (a) Draw each the following vectors (each starting from the origin): $\mathbf{d}, 2\mathbf{d}, 3\mathbf{d}, \text{ and } \frac{5}{2}\mathbf{d}.$

(b) Suppose t is some random number that is larger than 1. What does the vector $t\mathbf{d}$ look like compared to \mathbf{d} ?

 \mathfrak{D} That is, how is $t\mathbf{d}$ related to \mathbf{d} when you draw them both?

- (c) Draw the vector $\frac{1}{2}\mathbf{d}$ above. Suppose t is some random number between 0 and 1. What does the vector $t\mathbf{d}$ look like compared to \mathbf{d} ?
- (d) On the same grid above, draw the vectors $-\mathbf{d}$, $-2\mathbf{d}$, $-3\mathbf{d}$, $-\frac{5}{2}\mathbf{d}$. If t is some random negative number, describe what the vector $t\mathbf{d}$ looks like.
- (e) If you look at *all* the vectors of the form $t\mathbf{d}$ together at the same time, what geometric shape do they create (if any)?