Exam 3 Practice Problems

- 1. Let $f(x,y) = e^{-x^2 y^2}$.
 - (a) Make a guess for what the graph of this function looks like without using technology. (*Hint*: What is f(0,0)? What happens to f(x,y) as (x,y) move away from the origin?)
 - (b) Use technology to draw the graph. Was your guess correct?
 - (c) Sketch the contour diagram for this function.
- **2.** Explain what is wrong with the following statement: "Since $x^2 + y^2 = 1$ is the equation of a circle, the graph of $f(x,y) = x^2 + y^2$ is a circle."
- **3.** Is it true that $\mathbf{u} \cdot (\mathbf{v} + \mathbf{w}) = \mathbf{u} \cdot \mathbf{v} + \mathbf{u} \cdot \mathbf{w}$? Either explain why this is true for all vectors, or give a counterexample that shows it is not true for some vectors.
- **4.** Find the equation of the plane through the points (2,0,3), (5,2,-2), and (1,4,-1).
- **5.** A plane has equation z = 5x 2y + 7.
 - (a) Find a value of a making the vector $a\mathbf{i} + \mathbf{j} + 0.5\mathbf{k}$ normal (i.e., perpendicular) to the plane.
 - (b) Find a value of b so that the point (b+1,b,b-1) lies in the plane.
- **6.** Consider the plane x + 3y 2z = 4 and the vector $\mathbf{v} = \langle 1, 2, 3 \rangle$.
 - (a) Find a normal vector to the plane.
 - (b) What is the angle between **v** and the vector you found in part (a)?
 - (c) What is the angle between **v** and the plane?
- **7.** Spicy: Find the shortest distance between the planes 2x 5y + z = 10 and z = 5y 2x.
- 8. Give an example of a vector \mathbf{v} whose cross product with $\mathbf{u} = \mathbf{i} + \mathbf{j}$ is parallel to \mathbf{k} .
- **9.** Let $f(x,y) = 3x^2 + 4y^2 axy$.
 - (a) Find the values of a such that the graph of f slopes upwards when moving from the point (1,2) in the positive x-direction.
 - (b) Find the values of a such that the graph of f slopes upwards when moving from the point (1,2) in the positive y-direction.
- **10.** Give an example of a nonlinear function f(x,y) such that $f_x(0,0)=3$ and $f_y(0,0)=4$.
- **11.** Let h(x,y) be a differentiable function such that h(300,200) = 50, $h_x(300,200) = 8$, and $h_y(300,200) = -6$. Estimate the value of h(305,196).
- 12. If z = f(x) + yg(x), what can you say about z_{yy} ? Explain!
- 13. Let $f(x,y) = x^2 + 2y^2$. Find the directional derivative at the point $(0,\pi/4)$ in the direction of $\mathbf{i} + \mathbf{j}$.
- **14.** Let $g(x,y) = ye^{-x^2} + 2y$. Find the gradient of g and the maximum value of the directional derivative of g at the point (0,4).