More Series

1. Determine whether each of the following series converges or diverges (with explanation).

(a)
$$\sum_{n=0}^{\infty} \frac{1}{2^n + 7}$$

(b)
$$\sum_{n=0}^{\infty} \frac{4^n + n}{3^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{n^4 - n + 5}$$

(d)
$$\sum_{n=10}^{\infty} \frac{1}{n^{0.9} - 6}$$

(e)
$$\sum_{n=0}^{\infty} \frac{4^n}{n!}$$

2. Use a calculator or computer to compute the first ten partial sums of $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$. Then plot these ten values on a number line. What do you notice?

3. Which of the following alternating series converges?

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} n}{2n+3}$$

4. Determine whether each alternating series is absolutely convergent, conditionally convergent, or divergent.

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n n!}{2^n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{\sqrt{n+5}}$$

(c)
$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{1.5}}$$

(d)
$$\sum_{n=2}^{\infty} \frac{(-1)^n n}{n^3 - 1}$$

5. Suppose you want to help a friend study for the next exam. Write down several infinite series that you could give your friend as practice for determine convergence or divergence? Try to write down a selection of series that together involve *all* of the series concepts we have studied so far!