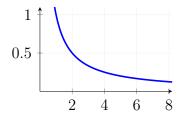
Series of Real Numbers

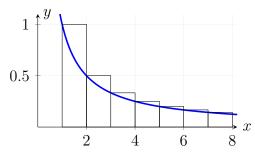
1. Lana: Hey, Simon! Want to draw with me?

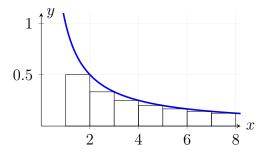
Simon: Sure, but I really miss integrals. Can we please go back? I'll draw $f(x) = \frac{1}{x}$.



Lana: YAY! This reminds me of when we did improper integrals.

Simon: I'll draw the left and right Riemann sum rectangles to approximate $\int_{1}^{\infty} \frac{1}{x} dx$.





Lana: Now we just have to add up the areas of all of the rectangles!

Simon: Um....I thought I told you I wanted to go back to integrals...

Group Task: Write the left and right rectangle areas as sums that goes on forever. 🕹 They are slightly

different!

Simon: We know $\int_1^\infty \frac{1}{x} dx$ diverges, so the area underneath $y = \frac{1}{x}$ is infinite.

Lana: I guess that this must mean that the series $\sum_{n=1}^{\infty} \frac{1}{n}$ also diverges!

Group chat: Why did Lana say this?

Simon: I think we can use the same reasoning to argue that $\sum_{i=1}^{\infty} \frac{1}{n^2}$ converges. Amazing!

Group chat: Why does Simon think that $\sum_{n=1}^{\infty} \frac{1}{n^2}$ converges?

Group chat: For which value(s) of p do you think $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges?

- **2.** (a) Is the function $f(x) = \frac{2x}{(x^2+4)^2}$ continuous as $x \to \infty$?
 - (b) Is the function $f(x) = \frac{2x}{(x^2+4)^2}$ (at least eventually) positive as $x \to \infty$?
 - (c) Is the function $f(x) = \frac{2x}{(x^2+4)^2}$ (at least eventually) decreasing as $x \to \infty$?
- ♦ IF the answers to (a), (b), and (c) are all YES, you may TRY using the integral test.

- (d) Does $\int_{1}^{\infty} \frac{2x}{(x^2+4)^2} dx$ converge or diverge?
- (e) Does $\sum_{n=1}^{\infty} \frac{2n}{(n^2+4)^2}$ converge or diverge?
- 3. (a) If $n \ge 1$: $\frac{1}{n^2 + n}$ is bigger/smaller than $\frac{1}{n^2}$.

tircle one

- (b) The sum $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ is bigger/smaller than the sum $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
- (c) Ava: I really want to know if $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ converges or diverges.

Milo: That series totally converges. Look at part (b) above!

Group Chat: Why do you think Milo is arguing that $\sum_{n=1}^{\infty} \frac{1}{n^2 + n}$ converges?

4. (a) **Milo:** You can also figure out the answer to $\sum_{n=2}^{\infty} \frac{1}{n - \sqrt{n}}$ this way.

 \bigcirc Do you see why this series starts at n=2?

Group chat: What is Milo thinking? Does that series converge or diverge?

(b) **Ava:** But Milo, your method is really picky! It *fails* to work for $\sum_{n=2}^{\infty} \frac{1}{n^2 - 1}$.

Milo: I guess so, but no worries! We know $\frac{1}{n^2-1} \approx \frac{1}{n^2}$, so it works out OK.

Group Chat: What are Milo and Ava talking about?