## Introduction to Series

Milo: Hey Chloe, do you recall that the decimal 0.3 is the same as the fraction 3/10?
Chloe: Yes! And, the decimal 0.33 is 33/100. Isn't the base-ten number system great?
Milo: It sure is! Here's something fun: we can think about each digit in 0.33 individually. So, 0.33 can also be written as

$$0.33 = \frac{3}{10} + \frac{3}{100}.$$

**Chloe:** Good point. You can also write the numbers 0.333 and 0.3333 in a similar fashion.

Group chat: What does Chloe mean?

Chloe: We could even write the number  $0.333\overline{3}$  in this way.

**Group chat:** Now what does Chloe mean? Write  $0.333\overline{3}$  as a sum of fractions.

The "bar" over the last 3 means it just keeps going ... for ever and ever and ever.

Milo: Noooooooo...now we get a sum of *infinitely* many fractions.

**Group chat:** What's a formula for the *n*th individual number you see *within* the sum you wrote above?

Chloe: Wow! This is cool!

$$\frac{3}{10} + \frac{3}{100} + \frac{3}{1000} + \frac{3}{10000} + \frac{3}{100000} + \frac{3}{10000000} + \frac{3}{100000000} + \cdots$$
 EQUALS  $\frac{1}{3}$ 

**Group chat:** Discuss Chloe's claim. Can you really add an infinite number of numbers?

2. Here is a fun sequence:

$$\frac{1}{2}$$
,  $\frac{1}{4}$ ,  $\frac{1}{8}$ ,  $\frac{1}{16}$ ,  $\frac{1}{32}$ ,  $\frac{1}{64}$ ,  $\frac{1}{128}$ ,  $\frac{1}{256}$ ,  $\frac{1}{512}$ , ...

Recall the word "sequence" from Friday's class!

Find a formula for the nth term of this sequence:

$$a_n =$$

Does this sequence converge or diverge?

**3.** (a) **Delphine:** What happens if we add up all of the numbers in that sequence in problem #2?

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \frac{1}{128} + \frac{1}{256} + \cdots$$

**Sundar:** Wow! Did you know that an infinitely long *sum* of numbers is called a **series**?

Easy group chat: Find a formula for *n*th term in this series.

(b) **Delphine:** I want to know if my series actually adds up to something!

**Sundar:** But you're adding up infinitely many numbers, which doesn't make sense to do.

**Delphine:** Except that in problem #1, Chloe added up infinitely many numbers and got an answer:  $\frac{1}{3}$ .

**Sundar:** Hmmm, you're right. I guess we should start adding numbers, then! **Delphine:** Let's do this just like we did with improper integrals! We'll add *a few numbers at a time*!

**Group chat:** Why would adding a few numbers at a time be similar to what we did with improper integrals?

**Delphine:** I am going to create a new number and call it  $s_n$ :

 $s_n$  = the sum of the first n numbers in the series

Group calculation:

$$s_1 = s_2 = s_3 = s_4 = s_5 =$$

**Group chat:** Can you find a *formula* for the sum of the first n numbers?

$$s_n =$$

(c) **Delphine:** See? Now we can use our formula for  $s_n$  to find the sum of the *entire* series!

Group chat: What is the sum of the entire infinite series?

So Be ready to explain why you think this!

- 4. What do you think is the sum of each of the following?
  - (a)  $2+2+2+2+2+2+2+2+\cdots$
  - (b)  $2-2+2-2+2-2+2-2+2-2+\cdots$

• Can you come up with a formula that describes the *n*-th number in the sum?

5. In each of the following series, the next term is always the *same* multiple of the previous term. For each, find the "common ratio" between terms and write a summation formula starting with index n = 0.

(a) 
$$1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \frac{1}{243} + \cdots$$

common ratio: r =

summation formula:  $\sum_{i=1}^{\infty}$ 

(b) 
$$5 + \frac{5}{3} + \frac{5}{9} + \frac{5}{27} + \frac{5}{81} + \frac{5}{243} + \cdots$$

common ratio: r =

summation formula:  $\sum_{i=1}^{\infty}$ 

(c) 
$$-5 + \frac{5}{3} - \frac{5}{9} + \frac{5}{27} - \frac{5}{81} + \frac{5}{243} + \cdots$$

common ratio: r =

summation formula:  $\sum_{i=1}^{\infty}$ 

(d) 
$$\frac{1}{3} + \frac{2}{3} + \frac{4}{9} + \frac{8}{27} + \frac{16}{81} + \frac{32}{243} + \cdots$$

common ratio: r =

summation formula:  $\sum_{i=1}^{\infty}$ 

**6.** These series also have the property that the next term is always the *same* multiple of the previous term. For each, find the first term. Then find the "common ratio" between terms.

(a) 
$$\sum_{n=0}^{\infty} \left(\frac{-2}{3}\right)^n$$

(b) 
$$\sum_{n=1}^{\infty} \frac{4}{3^n}$$

(c) 
$$\sum_{n=3}^{\infty} \frac{e^{n+1}}{\pi^n}$$

(d) 
$$\sum_{n=0}^{\infty} \frac{6^{n+1}}{5^{2n}}$$