Sequences and Limits

1. Find a formula for the nth term of the following infinite sequences:

$$\{a_n\} = \left\{e \cdot \pi, \frac{e \cdot \pi^2}{2}, \frac{e \cdot \pi^3}{3}, \frac{e \cdot \pi^4}{4}, \frac{e \cdot \pi^5}{5}, \dots\right\}$$

$$\{b_n\} = \{1, \frac{2}{3}, \frac{3}{5}, \frac{4}{7}, \frac{5}{9}, \frac{6}{11}, \dots\}$$

$$\{c_n\} = \{1, \frac{1}{2}, \frac{1}{6}, \frac{1}{24}, \frac{1}{120}, \frac{1}{720}, \ldots\}$$

$${d_n} = {-1, 1, -1, 1, -1, 1, -1, 1, -1, \dots}$$

$$\{j_n\} = \{-1, \frac{1}{2}, \frac{-1}{6}, \frac{1}{24}, \frac{-1}{120}, \frac{1}{720}, \ldots\}$$

$${k_n} = {3, 7, 3, 7, 3, 7, \dots}$$

2. For the sequences above...

(a) What is
$$\lim_{n\to\infty} a_n$$
?

(d) What is
$$\lim_{n\to\infty} d_n$$
?

(b) What is
$$\lim_{n\to\infty} b_n$$
?

(e) What is
$$\lim_{n\to\infty} j_n$$
?

(c) What is
$$\lim_{n\to\infty} c_n$$
?

(f) What is
$$\lim_{n\to\infty} k_n$$
?

3. Erez: This isn't calculus! I miss integrals. Improper integrals were pretty interesting.

Chloe: Agreed. But did you know there are similarities at least? We still get to say the words "converge" and "diverge."

Erez: We have not defined those words in the context of sequences!

Chloe: Oh, but we can! The definition is not really any different!

Group chat: What does Chloe mean? How would you define converge and diverge in the context of sequences?

4. Look again at the sequences at the top of this page. Which sequences converge? Which diverge?

5. For each of the following formulas for a_n , does the sequence $\{a_n\}$ converge or diverge? If it converges, what does it converge to?

(a)
$$a_n = \frac{27}{n^2 - 2}$$

(b)
$$a_n = \frac{n^3 + 4n^2 + 1}{3n^3 - 2n + 4}$$

(c)
$$a_n = \frac{n^3 + 4n^2 + 1}{3n^4 - 2n + 4}$$

(d)
$$a_n = \sin(\pi n)$$

(e)
$$a_n = \cos(\pi n)$$

$$(f) a_n = \frac{n^7}{2^n}$$

6. Phil: Hey there, Renita! Have I shown you my favorite sequence? Here it is:

$$2.9, 2.95, 2.959, 2.9595, 2.95959, 2.959595, \dots$$

Renita: Oh, I get it! I love patterns.

Phil: The problem is I am having trouble finding a formula for it, so I cannot figure out how to argue that this sequence converges, even though it clearly does!

Renita: The terms of your sequence are getting larger and larger, right?

Phil: You betcha!

Renita: And none of the terms of your sequence are larger than 3, right?

Phil: Yeah...

Renita: That's enough information to guarantee your sequence converges!

Group chat: Why does Renita say "that's enough information to guarantee your sequence converges"?

7. Try to modify Renita's argument for the sequence

$$2.1, 2.01, 2.001, 2.0001, 2.00001, 2.000001, 2.0000001, \dots$$