
Computer Science 125
8 October 2020

Recursive function: a function that calls itself1.

Example: summing a list2.

Three laws of recursion3.

def listsum(numList):
 theSum = 0
 for i in numList:
 theSum = theSum + i
 return theSum

A recursive algorithm must have a base case.1.

A recursive algorithm must move toward the base case.2.

Recursion is useful when you can take a big problem and
break it into a smaller problem that is just like the big
problem, but smaller.

def listsum(numList):
 if len(numList) == 1:
 return numList[0]
 else:
 return numList[0] + listsum(numList[1:])

 Day15 Page 1

Write a recursive function that prints the nth row of Pascal's triangle.4.

A recursive algorithm must move toward the base case.2.

A recursive algorithm must call itself, recursively.3.

function to return row n
def pascal(n):
 # base case
 if n == 0:
 return [1]
 # move toward base case
 else:
 prevRow = pascal(n-1)
 print(prevRow)
 currRow = [1]
 for i in range(n-1):
 currRow.append(prevRow[i] + prevRow[i+1])
 currRow.append(1)
 return currRow

print(pascal(5))

 Day15 Page 2

PRACTICE WITH RECURSION – SOLUTIONS

1. Factorials: Recall that the factorial of an integer 𝑛, denoted 𝑛!, is the product of all positive

integers less than or equal to 𝑛. For example, the factorial of 5 is

5! = 5 ⋅ 4 ⋅ 3 ⋅ 2 ⋅ 1 = 120

Write a recursive function to compute the factorial of a number.

First, think about how the problem of computing the factorial of 𝑛 can be reduced to the

problem of computing the factorial of a smaller number — this gives you a recursive

strategy. Then, identify the base case that will cause the recursion to stop.

def factorial(n):
 if n <= 1:
 return 1
 else:
 return n*factorial(n-1)

2. First uppercase letter: Write a recursive function that finds the first uppercase letter in a

string.

First, think about how the problem of finding the first uppercase letter in a string can be

reduced to a smaller problem. Then identify the base case that will cause the recursion to

stop.

import string

def firstUppercase(text):
 if len(text) == 0:
 return None
 if text[0] in string.ascii_uppercase:
 return text[0]
 return firstUppercase(text[1:])

Working with a partner/group, use the following steps to solve each of the following

problems.

(a) Plan your code on the white board (either on the classroom wall or on Zoom). Write out

your entire program. Think about what errors might occur and how to fix them.

(b) Plan multiple test cases. What input will you send to your function? For each input,

what value should be returned?

(c) Only after you have completed steps (a) and (b) should you type your code in Python.

(d) After you have typed your code, run your test cases. Does your code work? If not, how

can you fix it?

3. Recamán’s sequence: Recamán’s sequence is a sequence of integers 𝑎0, 𝑎1, 𝑎2, … defined

recursively as follows. First, 𝑎0 = 0. Then, for 𝑛 > 0:

𝑎𝑛 = {
𝑎𝑛−1 − 𝑛 if 𝑎𝑛−1 − 𝑛 is positive and not already in the sequence,
𝑎𝑛−1 + 𝑛 otherwise.

The first few terms of the sequence are 0, 1, 3, 6, 2, 7, 13, 20, ….

Write a recursive function recaman(n) that computes the first 𝑛 terms of Recamán’s

sequence.

def recaman(n):
 if n == 0:
 return [0]

 # else: get terms a_0, ..., a_(n-1)
 seq = recaman(n-1)

 # now compute term a_n
 t = seq[-1] - n
 if t > 0 and t not in seq:
 seq.append(t)
 else:
 seq.append(seq[-1] + n)

 # done!
 return seq

4. Bonus – Tower of Hanoi: Write a recursive function that prints the moves necessary to solve

the Tower of Hanoi puzzle for 𝑛 disks. See en.wikipedia.org/wiki/Tower_of_Hanoi for an

explanation of the puzzle.

Let disk 1 be the smallest, disk 2 be the second-smallest, etc.
Let the posts be labeled 1, 2, 3.
Disks start on post 1, and end on post 3.

#recursive function to PRINT the steps required to move the n-smallest disks
from the "start" post to the "end" post
def towerOfHanoi(n, start, end):
 if n == 1:
 print("Move disk 1 from post", start, "to post", end)
 else:
 temp = 6 - start - end
 towerOfHanoi(n-1, start, temp)
 print("Move disk", n, "from post", start, "to post", end)
 towerOfHanoi(n-1, temp, end)

#now start the program
num = int(input("How many disks? "))
towerOfHanoi(num, 1, 3)
print("DONE")

https://en.wikipedia.org/wiki/Tower_of_Hanoi

