
Computer Science 125
17 September 2020

The in keyword checks whether a substring is in a string:1.

Write a function that reverses its string argument. 3.
Hint: Use the accumulator pattern!

Python has built-in functions find() and rfind() to find the position

of a substring within a string.

2.

mystring = "classroom"
while "o" in mystring:
 i = mystring.find("o")
 mystring = mystring[:i] + mystring[i+1:]
print(mystring)

 Day9 Page 1

The string module provides useful strings of characters of
certain types:

4.

string.ascii_lowercase

string.ascii_uppercase

string.digits

string.punctuation

def reverse(mystring):
 newstring = ""
 n = len(mystring)
 for i in range(-1, -(n+1), -1):
 print("i:", i, "; character is:", mystring[i])
 newstring = newstring + mystring[i]
 return newstring

print(reverse("classroom"))

string.ascii_letters

 Day9 Page 2

PRACTICE WITH STRINGS – SOLUTIONS
CS 125

1. Write a function removeNonAlpha(mystr) that removes all non-alphabetic characters from

a string mystr. That is, your function should accept a string of text, and then return a string

containing the same text but with all non-alphabetic characters removed. For example:

removeNonAlpha("abc123!xyz") returns "abcxyz"

import string
def removeNonAlpha(mystr):
 alpha = string.ascii_lowercase + string.ascii_uppercase
 newstr = ""
 for c in mystr:
 if c in alpha:
 newstr = newstr + c
 return newstr

#testing
print(removeNonAlpha("abc123ABC!=+"))
print(removeNonAlpha("q8A(p^L."))

2. Write a function removeSubstr(mystr, sub) that removes the first occurrence of string

sub from string mystr. For example:

removeAll("Mississippi", "ss") returns "Miissippi"

def removeSubstr(mystr, sub):
 i = mystr.find(sub) # index of sub, or -1 if not found
 if i == -1:
 return mystr
 newstr = mystr[:i] + mystr[i+len(sub):]
 return newstr

Working with a partner/group, use the following steps to solve each of the following

problems.

(a) Plan your function on the white board (either on the classroom wall or on Zoom). Write

out your entire program. Think about what errors might occur and how to fix them.

(b) Plan multiple test cases for your function. What input will you send to your function?

What value should the function return?

(c) Only after you have completed steps (a) and (b) should you type your code in Python.

(d) After you have typed your function, run your test cases. Does your function work? If

not, how can you fix it?

#testing
print(removeSubstr("abcdefg","bc"))
print(removeSubstr("abcdefg","xy"))
print(removeSubstr("abcdabcd","ab"))

3. Write a function that extracts text from inside of HTML tags. Your function declaration

should be:

def extractText(HTMLstring):

A call to extractText(“<i>some text</i>”) should return “some text”.

Hint: consider the find and rfind Python string methods.

def extractText(HTMLstring):

 #find the first > in the string
 i = HTMLstring.find(">")

 #find the last < in the string
 j = HTMLstring.rfind("<")

 return HTMLstring[i+1:j]

#testing
print(extractText("<i>some text</i>"))
print(extractText("yay"))

4. Write a function that converts a word to pig Latin. The procedure for converting a word to

pig Latin is as follows:

 If the word begins with a constant, then all letters before the initial vowel are moved

to the end of the word, and then “ay” is added to the end. For example, “pig”

becomes “igpay”, and “glove” becomes “oveglay”.

 If the word begins with a vowel, then add “yay” to the end. For example, “eat”

becomes “eatyay”.

 def toPigLatin(word):
 newstr = ""
 vowels = "aeiouAEIOU"
 if word[0] in vowels:
 newstr = word + "yay"
 else:
 i=0
 while (word[i] not in vowels):
 i = i + 1
 newstr = word[i:] + word[:i] + "ay"
 return newstr

