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Abstract

A subprime Fibonacci sequence follows the Fibonacci recurrence, where the next term in a
sequence is the sum of the two previous terms, except that composite sums are divided by their
least prime factor. We extend the recurrence to three terms, investigating subprime tribonacci
sequences. It appears that all such sequences eventually enter a repeating cycle. We compute
cycles arising from more than one billion sequences, classifying them as trivial, tame, and wild.
We further investigate questions of parity and primality in subprime tribonacci sequences. In
particular, we show that any nonzero subprime tribonacci sequence eventually contains an
odd term.

1 Introduction

Suppose we compute terms of the Fibonacci sequence, but whenever we encounter a composite
number, we divide it by its least prime factor before writing it in the sequence. We obtain a
sequence of integers:

0, 1, 1, 2, 3, 5, 4, 3, 7, 5, 6, . . .

In other words, when computing the usual Fibonacci sequence, we add 3 + 5 to obtain 8, but in
this sequence, we divide 8 by 2 and obtain 4 instead. We then encounter 5 + 4 = 9, but we divide
by 3, obtaining 3 as the next term in the sequence. The sequence we compute in this fashion has
become known as Conway’s subprime Fibonacci sequence [5, 6].

More generally, starting with any two nonnegative integers a0 and a1, we obtain a subprime
Fibonacci sequence by recursively applying the rule

an =
an−1 + an−2

lpf(an−1 + an−2)
,

where lpf(n) denotes the least prime factor of a composite number n, or 1 if n is not composite. For
example, lpf(8) = 2, lpf(45) = 3, and lpf(5) = 1. Guy, Khovanova, and Salazar studied subprime
Fibonacci sequences with starting terms up to 105 and observed that every such sequence either
becomes constant or enters one of six different cycles [4].

What if, instead of a recurrence relation involving two previous terms, we use a recurrence of
three terms? Would interesting patterns emerge? Specifically, we begin with any three nonnegative
integers a0, a1, a2 and recursively apply the rule

an =
an−1 + an−2 + an−3

lpf(an−1 + an−2 + an−3)
. (1)

We call the resulting sequences subprime tribonacci sequences.
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For example, if we start with the integers 107, 29, 23, then we obtain the sequence

107, 29, 23, 53, 35, 37, 25, 97, 53, 35, 37, . . .

As soon as we see the terms 53, 35, 37 appear consecutively a second time in the sequence, we realize
that we have entered a cycle: the sequence will forever repeat the five terms 53, 35, 37, 25, 97.

Formally, the length of a cycle is the smallest positive integer k such that an = an+k for all n
greater than some integer N . The first N terms of the sequence need not be part of the cycle. We
specify that k is smallest so that the length is well-defined, rather than allowing lengths of multiple
iterations of the cycle. Furthermore, we sometimes refer to a cycle of length k as a k-cycle.

Thus, the previous subprime tribonacci sequence exhibits a 5-cycle, which is already interesting,
since it is half the length of the smallest nontrivial cycle known to occur in subprime Fibonacci
sequences [4].

We are aware of only one reference to subprime tribonacci sequences in the mathematics liter-
ature. Mihai Caragiu mentions these sequences in Sequential Experiments with Primes [1, Section
4.3], identifying four cycles that result as long-term behavior of these sequences.

In this paper, we explore the cycles that appear in subprime tribonacci sequences. Are there
really only four such cycles, or possibly more? Do these cycles exhibit any interesting properties,
such as patterns in parity or primality? Is there perhaps a cycle consisting entirely of even numbers?
Our search for answers takes us through the realms of both computation and proof, even touching
on some advanced topics in algebra and number theory.

2 Does it repeat? Does it repeat?

Subprime tribonacci sequences are defined by a third-order recurrence (Equation (1)), meaning
that each term is computed from the three previous terms. Accordingly, a subprime tribonacci
sequence enters a cycle whenever a triple of consecutive terms appears more than once in the
sequence; the sequence must then repeat the cycle indefinitely. A subprime tribonacci sequence
that does not enter a cycle must not be bounded, for there exist only finitely many triples of
nonnegative integers below any bound. Therefore, any subprime tribonacci sequence must either
enter a cycle or contain a subsequence that increases without bound.

We computed subprime tribonacci sequences from more than one billion starting triples and
found that each sequence enters a cycle eventually. Furthermore, we observe three distinct cate-
gories of cycles that appear. Trivial cycles consist of a single number that repeats. Other cycles
are non-constant but consist of numbers that share a common factor; we call these tame cycles.
We show that we have found all possible tame cycles of length 2 or 4, though other lengths may
be possible. All other cycles we call wild cycles; our investigation revealed nine wild cycles, with
lengths up to 3174.

2.1 Trivial Cycles

Some subprime tribonacci sequences converge to a limit, a constant which repeats indefinitely.
Such a limit is a cycle of length 1, which we call a trivial cycle. The following sequence not only
exhibits a trivial cycle, but also shows that a sequence leading to a trivial cycle may be initially
non-constant:

7, 0, 21, 14, 7, 21, 21, 7, 7, 7, . . .

If a subprime tribonacci sequence reaches a limit a, then Equation (1) implies that

a =
3a

lpf(3a)
.

This means that either a = 0 or a is an odd integer greater than 1.
In the example sequence above, it is no accident that all of the nonconstant terms are multiples

of the limit 7. A trivial cycle consisting of the odd integer a can only arise from three starting
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integers that have a common factor of a. This is a consequence of the following proposition, which
shows that the greatest common divisor (gcd) of three consecutive terms must either stay the same
or decrease by a prime factor with each new term of the subprime tribonacci sequence.

Proposition 1. Let a, b, c, d be four consecutive terms in a subprime tribonacci sequence. Then

gcd(a, b, c) = q · gcd(b, c, d),

where either q = 1 or q = lpf(a+ b+ c).

Proof. We consider two cases. In the first case, suppose a+ b+ c is prime. Then d = a+ b+ c and

gcd(a, b, c) = gcd(b, c, a+ b+ c) = gcd(b, c, d),

and the conclusion holds with q = 1.
In the second case, suppose a + b + c is composite. Then let p = lpf(a + b + c) > 1, and

thus d = a+b+c
p . Let g = gcd(a, b, c) = gcd(b, c, a + b + c). If a + b + c is divisible by gp, then

gcd
(
b, c, a+b+c

p

)
= g, and the statement holds with q = 1. Otherwise, a+ b+ c is not divisible by

gp, which means that g does not divide a+b+c
p . Since g divides a+ b+ c, this implies that g has a

factor of p. Thus, gcd
(
b, c, a+b+c

p

)
= g

p , so the conclusion holds with q = p.

Having described all trivial cycles, we turn to consider cycles that are not constant.

2.2 Tame Cycles

Consider the following subprime tribonacci sequences:

7, 14, 7, 14, 7, 14, 7, 14, . . .

35, 35, 70, 70, 35, 35, 70, 70, . . .

11, 44, 33, 44, 11, 44, 33, 44, . . .

17, 68, 68, 51, 17, 68, 68, 51, . . .

These sequences exhibit non-constant cycles with the property that all terms share a common
prime factor. We call such cycles tame cycles. Our computational investigation reveals tame
cycles of lengths 2 and 4, which we describe explicitly below.

There are no cycles of length 3, for if a, b, c form a cycle of length 3, then each term must equal
a+b+c

lpf(a+b+c) and the cycle is trivial (length 1). It is an open question whether there exist tame cycles

of length greater than 4.
All subprime tribonacci cycles of length 2 are of the form a, 2a, a, 2a, . . ., where a has no prime

factor smaller than 5. Clearly the terms of such cycles alternate even and odd. The restriction
on factors of a ensures that the denominators in Equation (1) alternate between 2 and 5, which is
essential, as shown in the proof of the following theorem.

Theorem 2. The only cycles of length 2 alternate between integers a and 2a, where a is an odd
integer with no prime factor smaller than 5.

Proof. Suppose that integers a and b form a cycle of length 2. We examine possible parities of a
and b.

First, suppose that both a and b are even. Then Equation (1) implies that b = 2a+b
2 , and so

a = b
2 . Similarly, a = 2b+a

2 , which yields b = a
2 . The only solution is a = b = 0, which is a trivial

cycle, not a cycle of length 2..
Next, suppose that both a and b are odd. Then Equation (1) gives

b =
2a+ b

lpf(2a+ b)
and a =

2b+ a

lpf(2b+ a)
.
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Let p = lpf(2a+ b) and q = lpf(2b+ a). Since a and b are odd, p and q must be odd as well. We
rewrite the equations above as

b(p− 1)

2
= a and

a(q − 1)

2
= b.

Neither p nor q may equal 1, for this would produce a = b = 0 and a trivial cycle. However, if
p > 3, then p−1

2 > 1, and so b > a. Similarly, if q > 3, then q−1
2 , and so a > b. Thus, p and q may

not both be greater than 3. The only remaining option is that at least one of p or q must equal 3,
but this again implies that a = b and we have only a trivial cycle.

Lastly, suppose that a and b have different parities. Without loss of generality, let a be odd
and b even. Then 2a + b is even, so Equation (1) yields b = 2a+b

2 . This implies that a = b
2 , and

thus b = 2a. Returning to Equation (1), we find

a =
2b+ a

lpf(2b+ a)
=

5a

lpf(5a)
,

which can only hold if lpf(5a) = 5. Thus, we obtain a cycle of the form a, 2a whenever a is an odd
integer with no prime factor smaller than 5.

Having classified all cycles of length 2, we now turn to cycles of length 4. Intriguingly, we
classify all tame cycles of length 4, though we cannot rule out the existence of a 4-cycle whose
terms have no common prime factor. Among tame 4-cycles, we find two distinct patterns. Some
tame 4-cycles have the form a, a, 2a, 2a, where a has no prime factor smaller than 5. Other tame
4-cycles consist of some permutation of b, 3b, 4b, 4b, for an integer b with no prime factor smaller
than 11. Our next theorem shows that all tame 4-cycles fit one of these patterns.

Theorem 3. All tame cycles of length 4 fit one of the following patterns:

• The cycle repeats the four terms a, a, 2a, 2a, where a has no prime factor smaller than 5.

• The cycle repeats some permutation of the four terms b, 3b, 4b, 4b, where b has no prime factor
smaller than 11.

Proof. Suppose there is a tame cycle of length 4, consisting of the integers a, b, c, d in that order.
From Equation (1), these numbers must satisfy:

a =
b+ c+ d

lpf(b+ c+ d)
, b =

a+ c+ d

lpf(a+ c+ d)
, c =

a+ b+ d

lpf(a+ b+ d)
, d =

a+ b+ c

lpf(a+ b+ c)
. (2)

We consider the parities of a, b, c, d in five cases.

Case 1. Suppose that all of a, b, c, d are even. In this case, each of the denominators in Equa-
tion (2) is 2. This implies that each of a, b, c, d is greater than the average of the other
three numbers, which is impossible.

Case 2. Suppose that one of a, b, c, d is odd, and the rest are even. Without loss of generality,
let a be odd and b, c, d be even. Then a + b + c is odd, which implies d is odd—a
contradiction.

Case 3. Suppose that two of a, b, c, d are odd. This is the most involved case. Without loss of
generality, either a and b are odd, or a and c are odd. We address each of these two
subcases separately.

For the first subcase, let a and b be odd (thus c and d are even). This implies that
lpf(a+ b+ c) = lpf(a+ b+ d) = 2. Together with Equation (2), we have 2d = a+ b+ c
and 2c = a+ b+ d, which implies c = d = a+ b.

Let q = lpf(b+ c+d) and r = lpf(a+ c+d). Then Equation (2) implies that a q−2
3 = b

and b r−2
3 = a. Since a and b are positive, it must be that q, r > 2. We examine several

possibilities:
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• If q = 3, then a = 3b and r = 11. This implies c = d = 4b, and we have a cycle
of the form 3b, b, 4b, 4b. Since r = lpf(a + c + d) = lpf(11b) = 11, we see that b
must satisfy lpf(b) ≥ 11.

• Similarly, if r = 3, then q = 11. This yields a cycle of the form a, 3a, 4a, 4a for
any integer a such that lpf(a) ≥ 11.

• If q = 5, then a = b and r = 5 also. We obtain a cycle of the form a, a, 2a, 2a for
any integer a such that lpf(a) ≥ 5.

• If both q and r are greater than 5, then q−2
3 > 1 and r−2

3 > 1. This implies that
b > a and also a > b, which is impossible.

For the second subcase, let a and c be odd (thus b and d are even). We then have
that lpf(a+ b+ c) = lpf(a+ c+ d) = 2. Together with Equation (2), this implies that
2d = a+ b+ c and 2b = c+ d+ a, so b = d = a+ c.

Let q = lpf(b+ c+ d) and s = lpf(a+ b+ d). Now Equation (2) implies that a q−2
3 = c

and c s−2
3 = a. Since a and c are positive, we have q, s,> 2. We again examine several

possibilities, which are analogous to those previously considered:

• If q = 3, then a = 3c and s = 11. This yields a cycle of the form 3c, 4c, c, 4c for
lpf(c) ≥ 11.

• If s = 3, then c = 3a and q = 11, which yields a cycle of the form a, 4a, 3a, 4a for
lpf(a) ≥ 11.

• If q = 5, then a = c and s = 5. We obtain the sequence a, 2a, a, 2a, which is a
cycle of length 2, not of length 4.

• If both q, s,> 5, then q−2
3 > 1 and s−2

3 > 1, which implies that c > a and a > c,
an impossibility.

Case 4. Suppose that one of a, b, c, d are even, and the rest are odd. Without loss of generality,
let a, b, and c be odd. Then their sum is odd, and so d is odd—a contradiction.

Case 5. Finally, suppose that all of a, b, c, d are odd. By the definition of a tame cycle, a, b, c, d
share a common prime factor, which must be odd. Thus, all of the denominators in
Equation (2) are at least 3. This means that each of a, b, c, d is less than or equal to
the average of the other three. This is only possible if each number is equal to the
average of the other three, which implies that a = b = c = d and we have a cycle of
length 1, not of length 4.

We see that only Case 3 results in cycles of length 4, and these cycles fit the two patterns given in
the statement of the theorem.

We emphasize that Theorem 3 does not rule out the possibility that there is a cycle of length
4 consisting of odd integers that don’t share a common factor. Such a cycle would not be a tame
cycle, but rather a wild cycle, which we now discuss.

2.3 Wild Cycles

All cycles consisting of numbers that do not share a common prime factor we call wild cycles. This
name alludes to the seeming unpredictability that we observe in these cycles, especially in their
lengths and the magnitudes of values that they contain.

We computed subprime tribonacci sequences starting with all triples a, b, c of nonnegative
integers up to and including 1000. That is, we examined slightly more than one billion sequences
(10013, to be exact), computing terms for each until we identified an eventual cycle. We found
that every sequence that we computed enters a cycle.

Besides the trivial and tame cycles discussed previously, we found nine wild cycles. The short-
est wild cycle, which has length 5, already appeared in the Introduction. Seven other cycles have
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lengths from 6 to 203. The longest cycle we found has length 3174. These wild cycles are sum-
marized in Table 1, which also displays the largest term and the number of prime terms in each
cycle.

Intriguingly, all of the wild cycles that we found consist entirely of odd numbers, an observation
we will explore further below. We notice that these odd numbers are frequently prime: 2473 of the
3767 total terms (65.6%) in the all of the wild cycles are prime. Among these terms we find 821
unique primes, including all primes between 11 and 929. The largest term in any cycle is 454507,
which is prime and appears in the 3174-cycle.

Cycle length Terms Largest term Num primes

5 25, 97, 53, 35, 37 97 3

6 37, 139, 73, 83, 59, 43 139 6

29 59, 617, 983, . . . , 209, 251, 307 10169 21

30 47, 151, 211, . . . , 313, 335, 1279 3251 23

70 59, 221, 439, . . . , 313, 1777, 1037 16063 43

93 19, 149, 43, . . . , 79, 83, 47 9257 63

157 67, 151, 919, . . . , 1087, 289, 701 69653 90

203 17, 113, 65, , . . . , 23, 31, 65 145969 136

3174 11, 71, 37, . . . , 17, 31, 29 454507 2088

Table 1: Summary of known wild cycles, each printed with its smallest term first.

Moreover, a perceptive reader might notice that all of the numbers in the “largest term” column
of Table 1 are prime! This is no coincidence, but rather a property of subprime tribonacci cycles
consisting of odd terms.

Proposition 4. If a subprime tribonacci cycle consists entirely of odd numbers, then the largest
term in the cycle is prime.

Proof. Let d be the largest term in the cycle, and let a, b, c be the three terms preceding d in the
cycle. Note that a+ b+ c is odd.

If a+ b+ c is composite, then lpf(a+ b+ c) ≥ 3, which implies d = a+b+c
lpf(a+b+c) ≤

a+b+c
3 . Thus

d is not greater than the average of a, b, and c. At least one of a, b, and c must be greater than
their average, and thus greater than d, which is a contradiction.

Therefore, a+ b+ c must be prime, so d = a+ b+ c is prime.

We invite the reader to consider whether Table 1 list all possible wild cycles. Perhaps further
computational investigation will turn up additional cycles. It would be particularly interesting to
find a wild cycle that contains one or more even numbers, or to prove that such a cycle does not
exist—we invite the reader to ponder this question, or to read the next section.

Table 2 displays the frequency of each cycle that occurs for starting values in various ranges.
Fascinatingly, the 3174-cycle is by far the most common cycle, occurring in 93.4% of the 10013

subprime tribonacci sequences that we computed. Most sequences result in wild cycles: trivial
and tame cycles occur in 3.53% of sequences with starting values not greater than 10, but the
percentage of such cycles drops to a mere 0.0078% when considering starting values up to 1000.
Cycles of length 70 and 157 do not occur at all for triples of starting values all not greater than
100. Computing sequences in lexicographical order by starting triple, we first find a cycle of length
157 when starting with the values 31, 108, 88, and the first 70-cycle occurs in the sequence starting
with the values 38, 57, 118.
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Cycle length a, b, c ≤ 10 a, b, c ≤ 100 a, b, c ≤ 1000

1 37 1088 75889

2 3 92 1124

4 7 409 11113

5 5 1437 1169622

6 40 61608 59904236

29 0 19 18887

30 0 8 11559

70 0 0 3551

93 0 1256 1356276

157 0 0 9182

203 0 3600 3424343

3174 1239 960784 937017219

Table 2: Distribution of cycle lengths by starting triple of nonnegative integers a, b, c.
Cycles of length 1 are trivial, cycles of lengths 2 and 4 are tame, and all other cycles
are wild.

3 Truly Odd Results

Our examination of cycles reveals no even terms among the wild cycles, which seem to occur in
the vast majority of subprime tribonacci sequences. Why is this? We now consider what patterns
of even and odd terms are possible in subprime tribonacci sequences.

It follows from the subprime tribonacci recurrence, Equation (1), that only certain patterns of
even and odd terms are possible in subprime tribonacci sequences. If the sum of three consecutive
terms is even, then the least proper factor of this sum is 2, and the next term may be even or
odd. However, if the sum of three consecutive terms is odd, then the next term must be odd. The
directed graph in Figure 1 illustrates these observations. The eight nodes are labeled with the
eight possible parity sequences (E for even, O for odd) for three consecutive terms; arrows between
nodes indicate the possible parity of the next term.

EEE EEO EOO OOO

OEE OOE OEO EOE

Figure 1: Parity graph for three consecutive terms of a subprime tribonacci sequence.

For example, suppose that a, b, c are consecutive terms in a subprime tribonacci sequence. If
a and c are odd, and b is even, then these terms are represented by the node labeled OEO. Since
a + b + c is even, the next term is d = a+b+c

2 , which may be even or odd. Thus, the three terms
b, c, d may have parities EOO or EOE. This is indicated by the arrows OEO → EOO and OEO →
EOE in the graph.

The parity graph contains one absorbing node: the node OOO, from which there are no arrows
to any other nodes. We thus have the following proposition.
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Proposition 5. If three consecutive terms are odd, then all subprime tribonacci terms after these
three will also be odd.

Proof. If a, b, c are three consecutive odd terms, then a + b + c is odd as well. Dividing a + b + c
by its least proper factor results in an odd number for the next term in the sequence. The result
follows by induction.

We notice other cycles (i.e., directed paths that return to their starting node) in the parity
graph. For example, the two edges connecting nodes OEO and EOE form a cycle in the graph,
corresponding to subprime tribonacci cycles that alternate even and odd terms. We have seen this
alternating pattern in the tame cycle of length 2, as well as in one pattern for 4-cycles. Another
graph cycle appears in the square with nodes EEO, EOO, OOE, and OEE. This corresponds to
subprime tribonacci cycles that contain alternating pairs of even and odd terms, which we have
seen in the other tame 4-cycles.

The parity graph also contains a triangle formed by the nodes EOO, OOE, and OEO. However,
we have seen that there is no subprime tribonacci 3-cycle. Whether there exist subprime tribonacci
cycles whose length is a multiple of 3 exhibiting the parity pattern EOOEOO... is an open question.

Intriguingly, we note the self-loop at the EEE node of the parity graph. Already curious about
the relative lack of even terms in subprime tribonacci sequences, we now realize that there may
exist subprime tribonacci sequences consisting entirely of even terms—the parity graph does not
rule this out, in any case. Perhaps we can construct such a sequence?

Suppose a, b, c are the initial terms of a nonzero subprime tribonacci sequence consisting entirely
of even terms. In this sequence, the sum of any three consecutive terms must be even, and thus
has least proper factor 2. Applying the recurrence relation from Equation (1), we find that the
sequence can then be written as:

a, b, c,
a+ b+ c

2
,
a+ 3b+ 3c

4
,

3a+ 5b+ 9c

8
,

9a+ 15b+ 19c

16
, . . . . (3)

The numerators in Equation (3) form a weighted tribonacci sequence: each numerator is a weighted
sum of the three preceding numerators. Specifically, let u1 = a + b + c, u2 = a + 3b + 3c, and
u3 = 3a+ 5b+ 9c; then remaining numerators satisfy the recurrence un = un−1 + 2un−2 + 4un−3.
The terms of Equation (3) are integers provided that each un is divisible by 2n, and they are even
integers if each un is divisible by 2n+1. Thus, we seek to find a weighted tribonacci sequence (un)
of positive integers that satisfies the infinite system of congruences:

un ≡ 0 (mod 2n+1) for n = 1, 2, 3, . . . .

Unfortunately, there is no such sequence (un) that satisfies this infinite system of congruences, a
result that follows from Theorem 6. The proof of Theorem 6 was shown to us by an anonymous user
of MathOverflow [7] and involves concepts from both Galois theory and the p-adic numbers. Since
these topics are somewhat beyond the scope of this article, we invite the reader unfamiliar with
them to consider this proof as an invitation to explore these delightful areas of advanced algebra
and number theory. Galois theory considers permutations of roots of polynomials such that any
equation satisfied by the roots is still satisfied after the roots are permuted. We recommend the text
by Cox as a nice introduction to Galois theory [2]. The p-adic numbers are naturally applicable to
the problem at hand because they involve divisibility by prime powers. Importantly, for the prime
p = 2, the 2-adic absolute value of an integer r is |r|2 = 2−v, where v is the largest integer such
that 2v divides r. Employed in the proof below, this absolute value is extended to the rationals
and other field extensions. For a friendly introduction to the p-adics, we recommend the text by
Gouvêa [3]. We now present the theorem.

Theorem 6. Let (un) satisfy the recurrence

un = un−1 + 2un−2 + 4un−3.

If (un) is not the zero sequence, then there is some maximal power 2m that divides the terms (un).
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Proof. Since the recurrence relation is linear with constant coefficients, we consider its character-
istic polynomial f(x) = x3−x2− 2x− 4. This polynomial has three distinct roots, which we label
α1, α2, α3. These roots lie in Q, the algebraic closure of the rational numbers. The un can be
expressed in terms of these roots:

un = A1α
n
1 +A2α

n
2 +A3α

n
3

for constants A1, A2, A3 ∈ Q(α1, α2, α3) obtained from the initial conditions u1, u2, u3. Specifically,
we have the matrix equation α1 α2 α3

α2
1 α2

2 α2
3

α3
1 α3

2 α3
3


A1

A2

A3

 =

u1u2
u3

 .
Since matrix is a Vandermonde matrix and thus invertible, we can express the Ai in terms of the
ui.

Any Galois automorphism sending αi to αj also sends Ai to Aj . Consequently, if one of the
Ai = 0, then all of the Ai = 0, and thus un = 0.

Instead, if A1 6= 0, we employ 2-adic numbers to complete the proof. Fix an embedding of Q
into the 2-adic field Q2. The Newton polygon of f consists of a line segment from (0, 2) to (2, 0)
and another line segment from (2, 0) to (3, 0). This implies that f has exactly two roots with
2-adic valuation −1 and one root with 2-adic valuation 0. Let α1 be the root with valuation 0, so
α2 and α3 have valuation −1. Then the following holds, where | · |2 denotes the 2-adic absolute
value:

|A1α
n
1 |2 = |A1|2, |A2α

n
2 |2 = |A2|2 · 2−n, |A3α

n
3 |2 = |A3|2 · 2−n.

For sufficiently large n,
|un|2 = |A1α

n
1 +A2α

n
2 +A3α

n
3 |2 = |A1|2

by the ultrametric inequality (which is actually an equality since the terms inside the absolute value
have different 2-adic valuations). Since |un|2 = |A1|2 for sufficiently large n, the 2-adic valuation
of un is eventually constant. This implies that there is some largest power of 2 that divides un.

With the result of Theorem 6, we now resolve the question of the existence of subprime tri-
bonacci sequences consisting entirely of nonzero even terms.

Theorem 7. The only subprime tribonacci sequence consisting entirely of even terms is the zero
sequence.

Proof. Suppose a, b, c are the initial terms of a subprime tribonacci sequence consisting entirely of
even terms. The sequence can be written as in Equation (3), with the weighted tribonacci sequence
of numerators (un) as defined previously.

If (un) is not the zero sequence, then by Theorem 6 there is a maximal power of 2 that divides
the un. This means that Equation (3) is not a sequence of integers, which is a contradiction.

Thus, it must be that un = 0 for all n. Now a, b, and c can be obtained from the un by
inverting the matrix in the following equation:1 1 1

1 3 3

1 5 9


ab
c

 =

u1u2
u3

 .
Since the un = 0, it follows that a = b = c = 0. Therefore, the only subprime tribonacci sequence
consisting entirely of even numbers is the zero sequence.

While there do not exist subprime tribonacci sequence consisting entirely of nonzero even terms,
there do exist subprime tribonacci sequences that start with arbitrarily many nonzero even terms.
For a simple example, consider the sequence starting with a = b = c = 2m for some positive integer
m. This sequence has at least m + 2 consecutive even terms; we leave the details to the reader.
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Other examples can be obtained by finding nonzero a, b, c such that the un satisfy a finite system
of congruences:

u1 ≡ 0 (mod 4), u2 ≡ 0 (mod 8), . . . , um ≡ 0 (mod 2m+1).

4 Parting Thoughts

Having gained insight into subprime tribonacci sequences, we are left with many more questions.
Most notably, do all subprime tribonacci sequences eventually enter a cycle? Are there other
subprime tribonacci cycles besides those that we have found? Are there any tame cycles of length
larger than 4? Are there any shortcuts to determining the cycle type from a given starting triple,
other than computing a potentially long list of terms until a cycle (or a previously identified
sequence) is detected?

We could also consider the consequences of modifying the definition of subprime tribonacci
sequences. What if negative numbers were allowed in these sequences? What if we modify the
recurrence relation to sum more than three consecutive terms? We could thus study subprime
tetranicci sequences (involving sums of four terms), subprime pentanacci sequences (five terms),
etc. What cycles emerge in these cases? How does the number or length of the cycles depend on
the number of terms in the recurrence relation?

Computational investigation can help in answering these and other questions. As a starting
point, our Python notebook, containing code that we used in our investigation of subprime tri-
bonacci sequences, is available at https://github.com/mlwright84/subtrib. With basic coding
ability and an eye for patterns, students can investigate the questions above and make their own
discoveries. We look forward to seeing future results of this work!
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