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When students encounter exponential functions for the first time, bacterial growth is often used as a stan-
dard example because it seems straightforward. However, we will show that hidden assumptions in the
time-to-division for individual bacteria lead to unexpected consequences in the exponential population
model.

We begin with the following simple-sounding problem:

The Classic Problem. Suppose a bacterium has an average division time of1hour. Write a model that gives
the population size after t hours if the initial population is 1 bacterium.

The naı̈ve solution to this problem is that the population size is given byP (t) = 2t. However, this model
is incorrect because it fails to consider the inherent randomness of the splitting times. In our example,
some bacteria will divide in less time than one hour and some will divide in more. This seems like a minor
issue that would still give rise to approximately the same model, but we will find that this is not the case at
all. Small amounts of randomness in the splitting time for bacteria leads to faster than expected growth in
the population size.

Deterministic Time-to-Division

Our first goal is to reexamine the naı̈ve solution to the classic problem and uncover any hidden assump-
tions. We will see that assuming a deterministic time-to-division, in which each bacteria splits at exactly
1 hour, quickly leads to absurdity.

Notice first, with this assumption, if someone asks for the population after 30 minutes, our answer
must still be “1 bacterium,” since the first bacterium hasn’t yet split. Likewise, at 1 hour and 30 minutes
(t = 1.5), the population must have size 2, and so on. This behavior is captured in the exponential step
function shown in Figure 1.
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Figure 1: Bacterial population growth with deterministic splitting times—an
“exponential step function.”
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You might say, “This doesn’t bother me, it’s still roughly exponential and agrees with our classic model
at all positive integer values.” Yet this model is still deeply troubling for three reasons:

1. We know from empirical data that the behavior of the population smooths out because of random-
ness and eventually approaches something that is more continuous in nature [3, 6]. It seems absurd,
especially as the population gets very large, that there would be hour-long stretches of time in which
no single bacterium splits.

2. The deterministic model makes the unstated assumption that the current “age” of the first bacterium
is zero. We need to know more than just how often a bacterium splits; we also need to know exactly
when it first comes into existence. If we start with a population of size 10, then we need to assume
that all ten bacteria have an “age of zero” and split after exactly 1 hour. It seems absurd that the
deterministic model requires us to assume a current age for each member of the bacteria colony.
Alternatively, perhaps the ages of each member of the original colony follow some distribution; then
the aggregate growth is a sum of individual step functions of the type that appear in Figure 1. Un-
fortunately, this simply creates multiple subcolonies, each with the dilemma in item 1.

3. It turns out that even a small amount of randomness in the splitting times results not in smoothing
out the growth function in Figure 1, but in much faster aggregate growth. To the authors, this seems
to be a relatively unknown phenomenon. The main goal of this article is to substantiate this point
with analysis and simulation.

Some readers, after hearing reason 3 above, might ask if the underlying distribution of splitting time
matters, not just the mean splitting time. Indeed, the underlying splitting distribution is critical, and so
we present the following definition.

Definition. The underlying splitting distribution is the distribution of the random variable that gives the time
from the birth of a single bacterium until it divides. If the distribution has mean µ, then the underlying
splitting rate is 21/µ − 1 and the underlying growth factor is 21/µ.

Said another way, “underlying splitting rate” refers to the the average number of bacteria that are “added”
to a single bacterium per unit of time, and “underlying growth factor” refers to the average multiplicative
growth that a single bacterium experiences per unit of time. For example, in the previous discussion of the
classic problem, the assumed underlying splitting distribution is deterministic with underlying splitting
rate 1 and growth factor 2. Each hour every bacterium becomes 2 bacteria.

What happens to the overall model if we instead use an underlying distribution that is nondeterminis-
tic? We now consider underlying distributions that are random.

Exponentially Distributed Time-to-Division

An exponential model is a good first guess for the underlying splitting distribution, since we often find that
exponential distributions govern lifespans, time to failure, or time intervals between random (Poisson-
distributed) events. Simple properties of exponential distributions lead us to a basic understanding of the
resulting population growth function, which we confirm by simulation.

In this context, the time until any given bacterium splits will be modeled by an exponential random
variable with rate λ = 1 (mean 1/λ = 1). That is, let the random variable Xi be the time until division for
the ith bacterium, with Xi ∼ Exp(1). We assume that the lifespans of all bacteria are independent and
have identical exponential distributions.

If there are n bacteria at a given time, then the amount of time until the next division will be the mini-
mum of all the Xi. Next, we invoke thememoryless property of the exponential distribution. A distribution
has this property if the probability of an event happening after time b is the same as the probability of the
event happening after time a+ b given that time a has elapsed. The fact that the exponential distribution
is memoryless implies we do not have to worry about the time each bacterium was “born.”

Let the random variable Yn represent the time until the next division. Thus, Yn is given by

Yn = min{X1, X2, . . . , Xn}.
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As is well known [4, Sec. 4.9], the minimum of n independent exponential variables with rate λ is expo-
nential with rate nλ. We have λ = 1, so Yn has an exponential distribution with rate n.

Since Yn ∼ Exp(n), when the population is of size n it grows at approximately rate n. This suggests
that 2t is not a good model for the population size, because this would imply that the growth rate at pop-
ulation size n would be n ln(2). Recalling that dn

dt = n is satisfied by et, we suppose that population size
might be approximated by et. Given this intuition, we now propose the population model

Q(t) = et.

We use simulation to compare population growth with the models P (t) = 2t and Q(t) = et. Figure 2
shows the growth of five simulated populations, each with underlying splitting distributionExp(1). These
plots confirm that P (t) = 2t severely underestimates the population growth, while Q(t) = et seems to be
a roughly average growth curve for these populations. In the following sections, we verify this result with
more rigor.
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Figure 2: Simulated growth of five populations, each with underlying splitting
distribution Exp(1). The model et (plotted as a dashed curve) appears to be
an average case, while the naı̈ve model 2t (dotted curve) underestimates the
population growth.

At this point, we need to highlight an apparent paradox. For any individual bacterium, the average
time-to-division is 1 hour. This seems to indicate that the population will double at about time t = 1, and
this is what the naı̈ve P (t) = 2t model shows. But according to our Q(t) = et model, the population
doubles at time t = ln(2) ≈ 0.69. A typical population doubles before the expected splitting time of the
bacteria!

One way to see what’s really happening here is to consider the median of the exponential distribution
instead of the expected value. The median ofExp(1) is, in fact, ln(2). In other words, if we consider a large
number of populations, each of which starts with a single bacterium at time t = 0, approximately half of
these populations will grow to size two (or more) by time t = ln(2) ≈ 0.69, even though the expected time
of the first split is t = 1! The paradox is resolved when we understand that, even though the average split-
ting time is 1 hour, most bacteria (in fact, about 63percent of them) split earlier than this. With exponential
time-to-division, a small portion of the bacteria have a long splitting times, but many split quickly.

We see that the underlying distribution for the splitting time matters quite a bit. Our model Q(t) based
on exponentially distributed time-to-division gives an aggregate growth factor of e ≈ 2.718 each hour
rather than 2. With the understanding that the underlying splitting distribution results in a different ag-
gregate rate, we introduce the following helpful definition:

Definition. If population size can be approximated by the exponential function y = abt, with b > 1, then
we call this the aggregate growth function. Furthermore, the aggregate growth factor is b and the aggregate growth
rate is b− 1.
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The definitions here are meant to be parallel to the definitions given earlier for underlying splitting dis-
tribution, underlying growth factor, and underlying growth rate. Once again, b conveys the multiplicative
growth and b− 1 conveys the additive growth per bacterium.

In the present discussion, the underlying splitting distribution is exponential with growth factor 2 and
rate 1, and the aggregate growth function is Q(t) = et with aggregate growth factor e and aggregate
growth rate e− 1 ≈ 1.718.

Having looked at underlying splitting times that are governed by an exponential distribution, we might
wonder what aggregate growth functions arise from other underlying distributions. We now turn to this
question.

Gamma Distributed Time-to-Division

When we look at bacterial growth in the laboratory, we actually find that the time-to-division for bacteria
is more closely modelled by a gamma distribution [1, 3, 6]. This also makes sense a priori, since the gamma
distribution is the sum of exponential distributions, and bacterial maturation can be thought of as a sum
of independent exponential distributions, each governing a part of development.

Let the splitting time for each bacterium have a gamma distribution with density function xα−1

Γ(α)βα e
−x/β

for x > 0, where Γ(α) denotes the gamma function. With this parametrization, the gamma distribution
has mean αβ (equivalently, rate 1

αβ ) and variance αβ2.
For the simplicity of our model, we assume that when a bacterium divides, it “dies” and is replaced by

two new bacteria.
Let the random variable Xi ∼ Gamma(α, β) be the time from the birth of the ith bacterium until

it dies. We call Xi the time-to-division of the ith bacterium. Thus, X1, X2, . . . are independent identi-
cally distributed random variables from the Gamma(α, β) distribution. Note that the Xi do not have the
memoryless property.

Let ci be the birth time of the ith bacterium, and we assume that c1 = 0. Then the first bacterium dies
at time X1, at which time the second and third bacteria are born. Thus X1 = c2 = c3.

LetTn be the time at which the population reaches sizen. Suppose that at some instant, the population
size is n, and the indexes of the currently-alive bacteria are i1, i2, . . . , in. Then the time of the next split,
when the population grows to size n+ 1, is

Tn+1 = min
k=1,...,n

{cik +Xik}.

Because the gamma distribution does not have the memoryless property, no closed-form expression for
the random variable Tn is available. So we employ simulation to further our analysis.

Assume, for example, that the underlying splitting distribution isGamma
(
2, 1

2

)
. For this distribution,

the mean splitting time for one bacterium is 1 hour, so we can easily compare with an exponential random
variable with rate 1 division per hour. Our simulation chooses a Gamma

(
2, 1

2

)
random splitting time

for each new bacterium and when that time elapses, two new random splitting times are initiated. We
continue the simulation in this manner, recording the time at which the population reaches each size. We
average our results over 10,000 simulations to approximate the expected population size at any time. Since
the Gamma distributions are not memoryless, the initial age of the bacterium matters; thus, we choose
the age of the initial bacterium for each population from the ages of bacteria alive at the end of a previous
simulation.

We likewise simulate the population size with the time-to-division given by other gamma distributions
of the form Gamma

(
α, 1

α

)
. Each of these gamma distributions has mean 1, so that we can maintain the

comparison to the 1 division per hour rate from the exponential distribution.
Figure 3 displays the average population growth curves resulting from these simulations for six values

ofα. We fit an exponential function ŷ(t) = rt to each of these curves, as shown in Table 1. We see that when
the underlying splitting distribution is a gamma distribution, the population size is well approximated by
an exponential function.

Moreover, Table 1 shows that the gamma distributions give rise to a continuum of exponential func-
tions. For Gamma(1, 1) we see the aggregate growth factor is very close to e, which is exactly as expected,
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Figure 3: Average population size over time when underlying splitting distri-
bution is Gamma(α, 1

α ). Each curve is the average of 10,000 simulations.

Underlying Splitting Distribution Aggregate Growth Function

Deterministic P (t) = 2t

Exp(1) Q(t) = et

Gamma(1, 1) ŷ(t) = 2.718t

Gamma(2, 1
2 ) ŷ(t) = 2.290t

Gamma(3, 1
3 ) ŷ(t) = 2.181t

Gamma(10, 1
10 ) ŷ(t) = 2.050t

Gamma(30, 1
30 ) ŷ(t) = 2.016t

Gamma(100, 1
100 ) ŷ(t) = 2.004t

Table 1: Letting the underlying splitting distribution vary gives rise to differ-
ent aggregate growth functions. The first two results in the table are from
earlier in this article and were established analytically. The other results were
obtained through simulation and regression with 0 ≤ t ≤ 10.

since the Gamma(1, 1) distribution is the same as the Exp(1) distribution! As α increases, the aggregate
growth factor decreases towards 2. This also makes sense, because the variance of the Gamma(α, 1

α ) is
given by αβ2 = α

α2 = 1
α . As α increases, this variance decreases towards zero, and thus the population

behaves more and more like our deterministic model.
Therefore, when the time-to-division is governed by an exponential random variable or a gamma ran-

dom variable, we obtain faster overall population growth than in our deterministic model. In practice,
values of α and β that give a near-zero variance, such as those shown in the bottom of Table 3, are unrea-
sonable. Bacterial splitting times are well-fitted by Gamma distributions with parameters such as α = 9
andβ = 0.6 [3]. For parameters such as these, the fact that the aggregate growth functions are so different
from the deterministic model is significant. This substantiates our point that that even small amounts of
randomness in splitting times produce faster aggregate population growth.

Arbitrarily Distributed Time-to-Division

Our simulations reveal that when the underlying splitting distribution is a gamma distribution, the over-
all population size is eventually well-approximated by an exponential function, with an average aggregate
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growth factor that is determined by the underlying splitting distribution. What if we choose a different dis-
tribution, such as a Weibull distribution, as the underlying splitting distribution? It turns out that regard-
less of our particular choice of underlying splitting distribution, the population size will be approximately
an exponential function for large times t.

In the literature on stochastic processes, the bacteria-splitting scenario is known as a Bellman-Harris
Branching Process [2, 5]. For such a process, let Z(t) be the aggregate population growth function, and let b
be the aggregate growth factor. It can be shown that if the underlying splitting distribution is continuous
and the underlying growth factor is larger than 1, then the ratio

Z(t)

bt
(1)

converges with probability 1 to a random variable W with expected value 1 [2, 5].
Informally, this says that for any underlying splitting distribution (subject to mild constraints), the

aggregate growth function of any individual population will converge to wbt for some positive number w.
Furthermore, if we examine many populations and average their values of w, we will get approximately 1.
In other words, the average of the aggregate growth functions of many populations, at a large time value t,
will be approximately bt. In effect, we have already seen this in Figure 3, where we averaged the aggregate
growth functions of 10,000 simulations and obtained curves that were very close to exponential functions.

As we have seen in the previous section, the aggregate growth factor b is not obvious from the underly-
ing splitting distribution. However, the following result from the theory of branching processes is critical
here [5]. It turns out that the aggregate growth factor b and the underlying splitting distribution with den-
sity function g(x) have the relationship

2

∫ ∞

0

g(x)

bx
dx = 1. (2)

The leading 2 above is due to our assumption that each bacterium splits into exactly two new bacteria.
To demonstrate this result, we use Equation (2) and numerical integration to compute the aggregate

growth factor when the underlying splitting distribution is Gamma
(
3, 1

3

)
, and we find that b ≈ 2.18096.

We then simulate 10,000 populations with this underlying splitting distribution, letting each grow until
t = 8, and record the ratio from Equation (1),Z(8)/b8, which is an instance of the random variableW . Fig-
ure 4 shows a histogram of these 10,000 ratios, which reveals the shape of the probability density function
of W . The mean of these 10,000 ratios is 0.996, which is close to 1, just as the theory promises!
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Figure 4: Histogram of 10,000 ratios Z(t)/bt computed from simulations of
populations with underlying splitting distribution Gamma

(
3, 1

3

)
at t = 8.

The mean of these ratios is 0.996 ≈ 1.
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Furthermore, Equation (2) provides a theoretical basis for the results from Table 1. It can be checked
using numerical integration that the aggregate growth factors in the table are approximately the values
that satisfy Equation (2) with the density functions for each of the gamma distributions considered.

Conclusion

We repeat how surprising and important these results are, considering how often bacterial growth is used
as a standard example of exponential growth. What could be simpler than bacteria that split once an hour,
we say? We have shown, however, that populations grow faster than expected when even a small amount
of randomness is introduced in the time-to-division. It’s not just a matter of “smoothing out” the deter-
ministic solution to the classic problem. Exponential growth does result from realistic scenarios, but the
connection between the underlying splitting distribution and the aggregate growth function is much more
intricate than it seems at first glance.

It is also worth taking a moment to recognize the real world context in which these models live. It goes
without saying that our models assume bacterial growth is not limited by environmental factors. In true
bacterial growth, we may see an initial lag, a period of exponential growth, a “stationary phase” in which
environmental factors limit population growth, and possibly a death phase in which the population dies
out. It also should be mentioned that we have used simple parameters for our underlying splitting dis-
tributions that are useful for revealing the underlying mathematics. A more realistic underlying splitting
distribution might beGamma(9, 0.6) [3], which results in an average time-to-division of 5.4 hours and an
aggregate growth factor b ≈ 1.14274.

For those interested in an introduction to stochastic processes, we recommend the text by Ross [7]. For
a deep dive into branching processes, including a discussion of the general result discussed in the previous
section, see Kimmel and Axelrod [5].

We invite the reader to apply the results in this paper to the following problem, which we call the Un-
reliable Banker Problem: Your banker agrees to pay you interest every 20 days. However, he is a bit scattered
and sometimes pays the interest a few days late, but other times he pays a few days early. Every time he
hands you an interest check, he restarts the 20-day clock. This might seem like worrisome behavior, but the
average time between interest payments turns out to be exactly 20 days. Is the banker’s untimely behavior
helping your balance, or not? Should you find a more timely banker? Do you need more information to
decide?

Code

The simulations presented in this paper were written in Python. The code is available at github.com/
mlwright84/bacgrowth.
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